
Event Objects

Event Objects

Introduction

An Event object contains information about an asynchronous event. Typically, events are generated by
the controller, but in some special cases it is possible to generate events from the host computer.

The Event object is retrieved through the EventMgr, via the Notify object. The Event object contains data
about the type of event, its source, and other information. The user Event fields can be configured to
collect data at the time when the event occurs in the controller.

| Error Messages |

Methods

Configuration and Information Methods
 mpiEventStatusGet Get Event status
 mpiEventStatusSet Set Event status
 mpiEventTypeName Get Event type name

Data Types

 MPIEventMessage

 MEIEventNotifyData

 MPIEventStatus

 MEIEventStatusInfo

 MPIEventType / MEIEventType

Constants

 MPIEventStatusINFO_COUNT_MAX defines the size of the MPIEventStatus.info[] array.

file:///C|/htmlhelp/Software-MPI/docs/Event/evt_out.htm9/25/2006 10:01:47 AM

file:///C|/htmlhelp/Software-MPI/docs/error_table.htm#event

mpiEventStatusGet

mpiEventStatusGet

Declaration

 long mpiEventStatusGet(MPIEvent event,

 MPIEventStatus *status)

 Required Header: stdmpi.h

Description

mpiEventStatusGet gets the status of an Event object (event) and writes it into the structure pointed to
by status. Event status includes the event type, type-specific codes and the event source.

Return Values

MPIMessageOK

Sample Code

 /* Prototype for logging function */
void logToFile(const char*);

MPIEventStatus eventStatus;
long returnValue;

/* Wait for motion event */
returnValue =
 mpiNotifyEventWait(notify,
 &eventStatus,
 MPIWaitFOREVER);
msgCHECK(returnValue);

/* Log event */
logToFile(mpiEventTypeName(eventStatus->type));

See Also

mpiEventStatusSet | meiEventStatusInfo | MPIEventType

EventLog.c

file:///C|/htmlhelp/Software-MPI/docs/Event/Method/stsget1.htm (1 of 2)9/25/2006 10:01:48 AM

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0
file:///C|/htmlhelp/Software-MPI/apps/c_out/EventLog.c.html

mpiEventStatusGet

file:///C|/htmlhelp/Software-MPI/docs/Event/Method/stsget1.htm (2 of 2)9/25/2006 10:01:48 AM

mpiEventStatusSet

mpiEventStatusSet

Declaration

 long mpiEventStatusSet(MPIEvent event,

 MPIEventStatus *status)

 Required Header: stdmpi.h

Description

mpiEventStatusSet sets (writes) the status of event using data from the structure pointed to by status.
Event status includes the event type, type-specific codes and the event source.

Return Values

MPIMessageOK

Sample Code

 /* Prototype for logging function */
void logToFile(const char*);

MPIEventStatus eventStatus;
long returnValue;

/* Wait for motion event */
returnValue =
 mpiNotifyEventWait(notify,
 &eventStatus,
 MPIWaitFOREVER);
msgCHECK(returnValue);

/* Log event */
logToFile(mpiEventTypeName(eventStatus->type));

See Also

mpiEventStatusGet | meiEventStatusInfo | MPIEventType

EventLog.c

file:///C|/htmlhelp/Software-MPI/docs/Event/Method/stsset1.htm (1 of 2)9/25/2006 10:01:48 AM

file:///C|/htmlhelp/Software-MPI/docs/error_descriptions.htm#0
file:///C|/htmlhelp/Software-MPI/apps/c_out/EventLog.c.html

mpiEventStatusSet

file:///C|/htmlhelp/Software-MPI/docs/Event/Method/stsset1.htm (2 of 2)9/25/2006 10:01:48 AM

mpiEventTypeName

mpiEventTypeName

Declaration

 const char* mpiEventTypeName(MPIEventType eventType);

 Required Header: stdmpi.h
Change History: Added in the 03.03.00

Description

mpiEventTypeName returns a text description for MPI events. mpiEventTypeName should be called
when a text description of the event type is needed.

Return Values

"Unknown Event" if EventTypeName cannot identify eventType.

pointer to Event Type Name if EventTypeName can identify eventType.

Sample Code

 /* Prototype for logging function */
void logToFile(const char*);

MPIEventStatus eventStatus;
long returnValue;

/* Wait for motion event */
returnValue =
 mpiNotifyEventWait(notify,
 &eventStatus,
 MPIWaitFOREVER);
msgCHECK(returnValue);

/* Log event */
logToFile(mpiEventTypeName(eventStatus->type));

See Also

MPIEventType

file:///C|/htmlhelp/Software-MPI/docs/Event/Method/tynm1.htm (1 of 2)9/25/2006 10:01:49 AM

mpiEventTypeName

EventLog.c

file:///C|/htmlhelp/Software-MPI/docs/Event/Method/tynm1.htm (2 of 2)9/25/2006 10:01:49 AM

file:///C|/htmlhelp/Software-MPI/apps/c_out/EventLog.c.html

MPIEventMessage

MPIEventMessage

Definition

typedef enum {
 MPIEventMessageEVENT_INVALID,
} MPIEventMessage;

Description

MPIEventMessage is an enumeration of Event error messages that can be returned by the MPI library.

MPIEventMessageEVENT_INVALID

The event type is not valid. This message code is returned by mpiEventStatusSet(...) if the event type
is not a member of the MPIEventType or MEIEventType enumerations.

See Also

file:///C|/htmlhelp/Software-MPI/docs/Event/DataType/mes1.htm9/25/2006 10:01:49 AM

MEIEventNotifyData

MEIEventNotifyData

Definition

 typedef struct MEIEventNotifyData {
 void *address[MEIXmpSignalUserData];
} MEIEventNotifyData;

Description

The address of an MEIEventNotifyData structure is passed as the third (void *external) argument to
mpiObjectEventNotifyGet/Set(...)†.

The address array contains host-based XMP addresses, the contents of which are returned in
MEIEventStatusInfo{}.data.

† Object represents an MPI object like Axis or Motion. Therefore, mpiObjectEventNotifyGet/Set(...)
represents functions like mpiAxisEventNotifyGet(...) and mpiAxisEventNotifySet(...).

See Also

MEIEventStatusInfo

file:///C|/htmlhelp/Software-MPI/docs/Event/DataType/nfydta2.htm9/25/2006 10:01:49 AM

MPIEventStatus

MPIEventStatus

Definition

 typedef struct MPIEventStatus {
 MPIEventType type;

 void *source;
 long info[MPIEventStatusINFO_COUNT_MAX];

} MPIEventStatus;

Description

MPIEventStatus holds information about a particular event that was generated by the XMP.

type identifies the type of event that was generated.

*source identifies what the source of the event was. source will either be a handle to an MPI
object or a host pointer. Use mpiObjectModuleId() to identify what source points to.

info Contains information on what generated the event and the conditions under which it
was generated. MEIEventStatusInfo simplifies decoding this array. Sample code is
shown on the MEIEventStatusInfo page.

See Also

mpiObjectModuleId | MPIEventType | MPIEventMgr | MPINotify | MEIEventStatusInfo |
MPIEventStatusINFO_COUNT_MAX

file:///C|/htmlhelp/Software-MPI/docs/Event/DataType/sts1.htm9/25/2006 10:01:50 AM

file:///C|/htmlhelp/Software-MPI/docs/Object/Method/mdlid1.htm
file:///C|/htmlhelp/Software-MPI/docs/EventMgr/evtmgr_out.htm
file:///C|/htmlhelp/Software-MPI/docs/Notify/nfy_out.htm

MEIEventStatusInfo

MEIEventStatusInfo

Definition

 typedef struct MEIEventStatusInfo {
 union {
 MPIHandle handle; /* generic */
 MPIAxis axis; /* MEIEventTypeAXIS_FIRST ...

 MEIEventTypeAXIS_LAST - 1 */
 long node; /* MEIEventTypeCAN_FIRST...
 MEIEventTypeCAN_LAST - 1 */
 long number; /* MPIEventTypeMOTION
 MPIEventTypeMOTOR_FIRST...
 MPIEventTypeMOTOR_LAST - 1

 MEIEventTypeMOTOR_FIRST ...
 MEIEventTypeMOTOR_LAST - 1 */
 long value; /* MPIEventTypeEXTERNAL */
 } type;

 MEIXmpSignalID signalID;

 /* Contents of addresses specified by MEIEventNotifyData{} */

 union {
 long sampleCounter;
 struct {
 long sampleCounter;
 } motion;
 struct {
 long sampleCounter;
 long positionError;
 MEIInt64 actualPosition;
 MEIInt64 commandPosition;
 } axis;
 struct {
 /* Data associated with the CAN event. */
 long data[4];
 } can;
 struct {
 long sampleCounter;
 long dedicatedIn;
 MEIInt64 encoderPosition;
 } motor;
 long word[MEIXmpSignalUserData];
 } data;
} MEIEventStatusInfo;

file:///C|/htmlhelp/Software-MPI/docs/Event/DataType/stsinf2.htm (1 of 3)9/25/2006 10:01:50 AM

file:///C|/htmlhelp/Software-MPI/docs/Axis/ax_out.htm

MEIEventStatusInfo

 Change History: Modified in the 03.04.00.

Description

MEIEventStatusInfo is an information structure that tells the XMP what the data in MPIEventStatus.info
holds. The information that is returned by this structure is only valid if the default configurations for the
recorder are used.

type A union that specifies the object handle, motion number, or
external ID value that generated the event

type.handle A generic object handle. Used by MPIRecorder and MPIMotor
events

type.axis An axis object handle. Used by MPIAxis events

type.node The CAN Node number of the MEICan object that generated the
event.

type.number The motion number of the MPIMotion object that generated the
event

type.value An ID value used to identify what external source or MPISequence
event was generated

signalID Specifies what type of object actually generated the event

data A union that contains extra data about the event that was
generated

data.sampleCounter The value of the sampleCounter when the event was generated

data.motion A union that contains extra data about the motion event that was
generated

data.motion.sampleCounter The value of the sampleCounter when the motion event was
generated

data.axis A union that contains extra data about the axis event that was
generated

data.axis.sampleCounter The value of the sampleCounter when the axis.event was
generated

data.axis.positionError The value of the axis' position error when the axis event was
generated. Data is represented as a float.

data.axis.actualPosition The value of the axis' actual position when the event was
generated

data.axis.commandPosition The value of the axis' command position when the axis event was
generated

file:///C|/htmlhelp/Software-MPI/docs/Event/DataType/stsinf2.htm (2 of 3)9/25/2006 10:01:50 AM

MEIEventStatusInfo

data.can.data A union that contains extra data about the CAN event that was
generated.

data.motor A union that contains extra data about the motor event that was
generated

data.motor.sampleCounter The value of the sampleCounter when the motor event was
generated

data.motor.dedicatedIn The value of the motor’s dedicatedIn word when the motor event
was generated

data.motor.encoderPosition The value of the motor's ecoder position when the event was
generated

data.word[] The extra data about the event that was generated formatted as
an array of long values

Sample Code

 MPINotify notify
 MPIEventStatus eventStatus;

 . . .

 /* Wait for event */
 returnValue =
 mpiNotifyEventWait(notify,
 &eventStatus,
 MPIWaitFOREVER);
 msgCHECK(returnValue);

 if (eventStatus.type == MPIEventTypeMOTION_DONE) {
 MEIEventStatusInfo *info;

 info = (MEIEventStatusInfo *)eventStatus.info;

 . . .
 }

See Also

MPIEventStatus | MPIAxis

file:///C|/htmlhelp/Software-MPI/docs/Event/DataType/stsinf2.htm (3 of 3)9/25/2006 10:01:50 AM

file:///C|/htmlhelp/Software-MPI/docs/Axis/ax_out.htm

MPIEventType / MEIEventType

MPIEventType / MEIEventType

Definition: MPIEventType

typedef enum {
 MPIEventTypeINVALID,

 MPIEventTypeNONE, /* 0 */

 /* Motor events */
 MPIEventTypeAMP_FAULT, /* 1 */
 MPIEventTypeHOME, /* 2 */
 MPIEventTypeLIMIT_ERROR, /* 3 */
 MPIEventTypeLIMIT_HW_NEG, /* 4 */
 MPIEventTypeLIMIT_HW_POS, /* 5 */
 MPIEventTypeLIMIT_SW_NEG, /* 6 */
 MPIEventTypeLIMIT_SW_POS, /* 7 */
 MPIEventTypeENCODER_FAULT, /* 8 */
 MPIEventTypeAMP_WARNING, /* 9 */

 /* Motion events */
 MPIEventTypeMOTION_DONE, /* 10 */
 MPIEventTypeMOTION_AT_VELOCITY, /* 11 */

 /* Recorder events */
 MPIEventTypeRECORDER_HIGH, /* 12 */
 MPIEventTypeRECORDER_FULL, /* 13 */
 MPIEventTypeRECORDER_DONE, /* 14 */

 /* External events */
 MPIEventTypeEXTERNAL, /* 15 */
} MPIEventType;

Description

MPIEventType is used by the MPIEventMask macros to help generate event masks.

file:///C|/htmlhelp/Software-MPI/docs/Event/DataType/ty3.htm (1 of 9)9/25/2006 10:01:51 AM

MPIEventType / MEIEventType

MPIEventTypeNONE This event type indicates no event was generated.

MPIEventTypeAMP_FAULT This event type indicates an Amp Fault event was generated from a Motor
object.

MPIEventTypeHOME This event type indicates a Home event was generated from a Motor object.

MPIEventTypeLIMIT_ERROR This event type indicates a position Error Limit was generated from a Motor
object.

MPIEventTypeLIMIT_HW_NEG This event type indicates a Negative Hardware Limit event was generated
from a Motor object.

MPIEventTypeLIMIT_HW_POS This event type indicates a Positive Hardware Limit event was generated
from a Motor object.

MPIEventTypeLIMIT_SW_NEG This event type indicates a Negative Software Limit event was generated
from a Motor object.

MPIEventTypeLIMIT_SW_POS This event type indicates a Positive Software Limit event was generated
from a Motor object.

MPIEventTypeENCODER_FAULT This event type indicates an Encoder Fault event was generated from a
Motor object. See Use of MPIEventTypeENCODER_FAULT.

MPIEventTypeAMP_WARNING This event type indicates an Amp Warning event was generated from a
Motor object.

MPIEventTypeMOTION_DONE This event type indicates a Motion Done event was generated from a Motion
Supervisor object.

MPIEventTypeMOTION_AT_VELOCITY This event type indicates an At Velocity event was generated from a Motion
Supervisor object.

MPIEventTypeRECORDER_HIGH This event type indicates that the controller's recorded data exceeded the
buffer's high limit.

MPIEventTypeRECORDER_FULL This event type indicates that the controller's recorded data has filled the
buffer.

MPIEventTypeRECORDER_DONE This event type indicates that the controller has recorded the number of
requested data records.

MPIEventTypeEXTERNAL This event type indicates an External event was generated from an external
source.

Definition: MEIEventType

file:///C|/htmlhelp/Software-MPI/docs/Event/DataType/ty3.htm (2 of 9)9/25/2006 10:01:51 AM

file:///C|/htmlhelp/Software-MPI/docs/Event/Topics/note_evtty.htm

MPIEventType / MEIEventType

typedef enum {
 /* Controller events */
 MEIEventTypeCONTROL_HOST_PROCESS_TIME_EXCEEDED,
 MEIEventTypeCONTROL_FAN,

 /* Motor events */
 MEIEventTypeLIMIT_USER0,
 MEIEventTypeLIMIT_USER1,
 MEIEventTypeLIMIT_USER2,
 MEIEventTypeLIMIT_USER3,
 MEIEventTypeLIMIT_USER4,
 MEIEventTypeLIMIT_USER5,
 MEIEventTypeLIMIT_USER6,
 MEIEventTypeLIMIT_USER7,
 MEIEventTypeLIMIT_USER8,
 MEIEventTypeLIMIT_USER9,
 MEIEventTypeLIMIT_USER10,
 MEIEventTypeLIMIT_USER11,
 MEIEventTypeLIMIT_USER12,
 MEIEventTypeLIMIT_USER13,
 MEIEventTypeLIMIT_USER14,
 MEIEventTypeLIMIT_USER15,

 /* Motion events */
 MEIEventTypeMOTION_OUT_OF_FRAMES,

 /* Axis events */
 MEIEventTypeIN_POSITION_COARSE,
 MEIEventTypeIN_POSITION_FINE,
 MEIEventTypeSETTLED
 MEIEventTypeAT_TARGET,
 MEIEventTypeFRAME,

 /* SynqNet events */
 MEIEventTypeSYNQNET_DEAD,
 MEIEventTypeSYNQNET_RX_FAILURE,
 MEIEventTypeSYNQNET_TX_FAILURE,
 MEIEventTypeSYNQNET_NODE_FAILURE,
 MEIEventTypeSYNQNET_RECOVERY,

 /* SqNode events */
 MEIEventTypeSQNODE_IO_ABORT,
 MEIEventTypeSQNODE_NODE_DISABLE,
 MEIEventTypeSQNODE_NODE_ALARM,
 MEIEventTypeSQNODE_ANALOG_POWER_FAULT,
 MEIEventTypeSQNODE_USER_FAULT,
 MEIEventTypeSQNODE_NODE_FAILURE,
 MEIEventTypeSQNODE_IO_FAULT,

 /* CAN events */
 MEIEventTypeCAN_BUS_STATE,

file:///C|/htmlhelp/Software-MPI/docs/Event/DataType/ty3.htm (3 of 9)9/25/2006 10:01:51 AM

MPIEventType / MEIEventType

 MEIEventTypeCAN_RECEIVE_OVERRUN,
 MEIEventTypeCAN_EMERGENGY,
 MEIEventTypeCAN_NODE_BOOT,
 MEIEventTypeCAN_HEALTH,
 MEIEventTypeCAN_DIGITAL_INPUT,
 MEIEventTypeCAN_ANALOG_INPUT,

} MEIEventType;

 Change History: Modified in the 03.03.00.

Description

MEIEventType is used by the MPIEventMask macros to help generate event masks.

MEIEventTypeCONTROL_HOST_PROCESS_TIME_EXCEEDED This is an event that occurs if the xmp.
SystemData.SyncInterrupt.ProcessFlag is set
when SynqNet data is transmitted at the end
of the firmware’s foreground cycle. If the user
is using the SynqInterrupt feature and sets
the ProcessFlag at the beginning of the
foreground cycle, the firmware checks to see
if the user cleared the ProcessFlag by the
time SynqNet data is transmitted. If the
ProcessFlag has not been cleared, the event
occurs.

MEIEventTypeCONTROL_FAN This is an event that can occur when the on-
board fan controller detects an error
(overheating, fan failure, etc…).

NOTE: This is for the ZMP only and will not
occur on an XMP.

MEIEventTypeLIMIT_USER0 This event type indicates a User Limit event
was generated from a Motor object. User
Limit number 0.

MEIEventTypeLIMIT_USER1 This event type indicates a User Limit event
was generated from a Motor object. User
Limit number 1.

MEIEventTypeLIMIT_USER2 This event type indicates a User Limit event
was generated from a Motor object. User
Limit number 2.

MEIEventTypeLIMIT_USER3 This event type indicates a User Limit event
was generated from a Motor object. User
Limit number 3.

file:///C|/htmlhelp/Software-MPI/docs/Event/DataType/ty3.htm (4 of 9)9/25/2006 10:01:51 AM

MPIEventType / MEIEventType

MEIEventTypeLIMIT_USER4 This event type indicates a User Limit event
was generated from a Motor object. User
Limit number 4.

MEIEventTypeLIMIT_USER5 This event type indicates a User Limit event
was generated from a Motor object. User
Limit number 5.

MEIEventTypeLIMIT_USER6 This event type indicates a User Limit event
was generated from a Motor object. User
Limit number 6.

MEIEventTypeLIMIT_USER7 This event type indicates a User Limit event
was generated from a Motor object. User
Limit number 7.

MEIEventTypeLIMIT_USER8 This event type indicates a User Limit event
was generated from a Motor object. User
Limit number 8.

MEIEventTypeLIMIT_USER9 This event type indicates a User Limit event
was generated from a Motor object. User
Limit number 9.

MEIEventTypeLIMIT_USER10 This event type indicates a User Limit event
was generated from a Motor object. User
Limit number 10.

MEIEventTypeLIMIT_USER11 This event type indicates a User Limit event
was generated from a Motor object. User
Limit number 11.

MEIEventTypeLIMIT_USER12 This event type indicates a User Limit event
was generated from a Motor object. User
Limit number 12.

MEIEventTypeLIMIT_USER13 This event type indicates a User Limit event
was generated from a Motor object. User
Limit number 13.

MEIEventTypeLIMIT_USER14 This event type indicates a User Limit event
was generated from a Motor object. User
Limit number 14.

MEIEventTypeLIMIT_USER15 This event type indicates a User Limit event
was generated from a Motor object. User
Limit number 15.

MEIEventTypeMOTION_OUT_OF_FRAMES This event type indicates that the number of
frames left to be executed in the controller
has reached the buffer empty limit /
emptyCount (see MPIMotionPoint). Therefore
the controller will perform the specified eStop
action.

file:///C|/htmlhelp/Software-MPI/docs/Event/DataType/ty3.htm (5 of 9)9/25/2006 10:01:51 AM

file:///C|/htmlhelp/Software-MPI/docs/Motion/DataType/pnt1.htm

MPIEventType / MEIEventType

MEIEventTypeIN_POSITION_COARSE This event type indicates an In Coarse
Position event was generated from an Axis
object. See Axis Tolerances and Related
Events and MPIAxisInPosition.

MEIEventTypeIN_POSITION_FINE This event type indicates that an In Fine
Position event was generated from an Axis
object. See Axis Tolerances and Related
Events and MPIAxisInPosition.

MEIEventTypeSETTLED Equivalent to
MEIEventTypeIN_POSITION_FINE.

MEIEventTypeAT_TARGET Reserved Frame Event.

MEIEventTypeFRAME This event type is currently not supported and
is reserved for future use.

MEIEventTypeSYNQNET_DEAD The SynqNet network was shutdown due to a
communication failure. This status/event
occurs when the controller fails to read/write
data to the SynqNet network interface from an
RX_FAILURE or a TX_FAILURE. To recover
from a DEAD event, the network must be
shutdown and reinitialized. SYNQNET_DEAD
is latched by the controller, use
meiSynqNetEventReset(...) to clear the status/
event bit.

MEIEventTypeSYNQNET_RX_FAILURE SynqNet network data receive failure.
Generated when the controller fails to receive
the packet data buffer (Rincon DMA to
internal memory) in two successive controller
samples. A SYNQNET_RX_FAILURE is most
likely caused by an incorrect
RX_COPY_TIMER value (internal) or a timing
problem. To recover from an RX_FAILURE
event, the network must be shutdown and
reinitialized. SYNQNET_RX_FAILURE is
latched by the controller, use
meiSynqNetEventReset(...) to clear the status/
event bit.

MEIEventTypeSYNQNET_TX_FAILURE SynqNet network data transmission failure.
Generated when the controller fails to
transmit the packet data buffer in two
successive controller samples. This occurs
when the maximum foreground time exceeds
the Tx time percentage of the controller's
sample period. The default Tx time value is
75% of the controller's sample period. To
correct Tx failures, either increase the Tx time
or decrease the controller's sample rate. To
recover from a TX_FAILURE event, the
network must be shutdown and reinitialized.
SYNQNET_TX_FAILURE is latched by the
controller, use meiSynqNetEventReset(...) to

file:///C|/htmlhelp/Software-MPI/docs/Event/DataType/ty3.htm (6 of 9)9/25/2006 10:01:51 AM

file:///C|/htmlhelp/Software-MPI/topics/ax_tol_mtn_rel_evt.htm#5
file:///C|/htmlhelp/Software-MPI/topics/ax_tol_mtn_rel_evt.htm#5
file:///C|/htmlhelp/Software-MPI/docs/Axis/DataType/inpos1.htm
file:///C|/htmlhelp/Software-MPI/topics/ax_tol_mtn_rel_evt.htm#5
file:///C|/htmlhelp/Software-MPI/topics/ax_tol_mtn_rel_evt.htm#5
file:///C|/htmlhelp/Software-MPI/docs/Axis/DataType/inpos1.htm
file:///C|/htmlhelp/Software-MPI/docs/Synqnet/Method/evtrst2.htm
file:///C|/htmlhelp/Software-MPI/docs/Synqnet/Method/evtrst2.htm
file:///C|/htmlhelp/Software-MPI/docs/Synqnet/Method/evtrst2.htm

MPIEventType / MEIEventType

clear the status/event bit.

MEIEventTypeSYNQNET_NODE_FAILURE SynqNet node failure. Generated when any
node's upstream or downstream packet error
rate counters exceed the failure limit. The
failure limits are configured with
meiSqNodeConfigSet(...). Use
meiSynqNetStatus(...) to read the
nodeFailedMask to identify the failed nodes.
Also, a SQNODE_NODE_FAILURE will be
generated for each node that fails.
SYNQNET_NODE_FAILURE is latched by
the controller, use meiSynqNetEventReset(...)
to clear the status/event bit. To recover from a
node failure, the network must be shutdown
and reinitialized.
See Also: SynqNet Node Failure

MEIEventTypeSYNQNET_RECOVERY SynqNet fault recovery. Generated when any
node's upstream or downstream packet error
rate counters exceed the fault limit and the
data traffic is redirected around the fault. The
fault limits are configurable via
meiSqNodeConfigSet(...).
SYNQNET_RECOVERY is latched by the
controller. Use meiSynqNetEventReset(...) to
clear the status/event bit.

MEIEventTypeSQNODE_IO_ABORT SynqNet node I/O abort. Generated when the
node I/O Abort is activated. When the I/O
Abort is triggered, the node's outputs are
disabled (set to the power-on condition). The
node I/O Abort can be configured to trigger
when either a Synq Lost occurs, Node
Disable is active, a Power Fault occurs, or a
User Fault is triggered. See
MEISqNodeConfigIoAbort{.} for more details.

MEIEventTypeSQNODE_NODE_DISABLE SynqNet node's Node Disable input is
activated. Generated when the Node Disable
input signal transitions from inactive to active.
This signal is latched in hardware. Use
meiSqNodeEventReset(...) to clear the status/
event and the hardware latch.

MEIEventTypeSQNODE_NODE_ALARM SynqNet node analog power failure.
Generated when the node's power failure
input bit transitions from inactive to active.
The power fault circuit is node specific, but is
typically connected to an analog power
monitor. This signal is latched in hardware.
Use meiSqNodeEventReset(...) to clear the
status/event and the hardware latch.

file:///C|/htmlhelp/Software-MPI/docs/Event/DataType/ty3.htm (7 of 9)9/25/2006 10:01:51 AM

file:///C|/htmlhelp/Software-MPI/docs/Synqnet/Method/sts2.htm
file:///C|/htmlhelp/Software-MPI/docs/Synqnet/Method/evtrst2.htm
file:///C|/htmlhelp/Technology/SynqNet/synq_failure.htm
file:///C|/htmlhelp/Software-MPI/docs/sqNode/Method/cfset2.htm
file:///C|/htmlhelp/Software-MPI/docs/Synqnet/Method/evtrst2.htm
file:///C|/htmlhelp/Software-MPI/docs/sqNode/Method/evtrst2.htm
file:///C|/htmlhelp/Software-MPI/docs/sqNode/Method/evtrst2.htm

MPIEventType / MEIEventType

MEIEventTypeSQNODE_ANALOG_POWER_FAULT AnalogPowerFault may be used by a
SynqNet node to indicate a problem with
analog power rails. For example, the RMB-
10V2 reports an AnalogPowerFault if its
internal +15V or -15V (used to power the
DACs and ADC) are below minimum values.

NOTE: The exact meaning of
AnalogPowerFault is specific to each
particular node.

MEIEventTypeSQNODE_USER_FAULT SynqNet node user fault. Generated when the
node's user configurable fault is triggered.
The user fault can be configured to monitor
any controller memory address and compare
the masked value to a specified pattern. This
signal is latched by the controller, use
meiSqNodeEventReset(...) to clear the status/
event bit.

MEIEventTypeSQNODE_NODE_FAILURE SynqNet node failure. Generated when a
node's upstream or downstream packet error
rate counters exceed the failure limit. The
failure limits are configured with
meiSqNodeConfigSet(...).
SQNODE_NODE_FAILURE is latched by the
controller, use meiSqNodeEventReset(...) to
clear the status/event bit. To recover from a
node failure, the network must be shutdown
and reinitialized.

MEIEventTypeSQNODE_IO_FAULT The event indicates that a fault was detected
when communicating with one of the slices or
SynqNet I/O modules attached to either Slice
or SQID nodes.This event is only generated
by slice and SynqNet (SQID) I/O nodes.

MEIEventTypeCAN_BUS_STATE The BusState has changed. Data[0] contains
the new bus state.

MEIEventTypeCAN_RECEIVE_OVERRUN The CAN hardware detected a receive
overrun.

MEIEventTypeCAN_EMERGENGY An emergency message was received from a
node. Data[0] contains the node number. Data
[1 to 4] contains the contents of the
emergency message.

MEIEventTypeCAN_NODE_BOOT A node boot message was received from a
node. Data[0] contains the node number.

MEIEventTypeCAN_HEALTH The health of a node has changed. Data[0]
contains the node number. Data[1] contains
the new node health.

file:///C|/htmlhelp/Software-MPI/docs/Event/DataType/ty3.htm (8 of 9)9/25/2006 10:01:51 AM

file:///C|/htmlhelp/Software-MPI/docs/sqNode/Method/evtrst2.htm
file:///C|/htmlhelp/Software-MPI/docs/sqNode/Method/cfset2.htm
file:///C|/htmlhelp/Software-MPI/docs/sqNode/Method/evtrst2.htm

MPIEventType / MEIEventType

MEIEventTypeCAN_DIGITAL_INPUT A digital input event was received from a
node. Data[0] contains the node number. Data
[1 to 4] contains the new input state.

MEIEventTypeCAN_ANALOG_INPUT An analog input event was received from a
node. Data[0] contains the node number. Data
[1 to 4] contains the new input state.

See Also

MPIEventMask | MPIEventMgr | MPINotify | MPIEventStatus | meiSynqNetEventReset | Error Limit and Limit
Switch Errors

Use of MPIEventTypeENCODER_FAULT

file:///C|/htmlhelp/Software-MPI/docs/Event/DataType/ty3.htm (9 of 9)9/25/2006 10:01:51 AM

file:///C|/htmlhelp/Software-MPI/docs/EventMask/evtmsk_out.htm
file:///C|/htmlhelp/Software-MPI/docs/EventMgr/evtmgr_out.htm
file:///C|/htmlhelp/Software-MPI/docs/Notify/nfy_out.htm
file:///C|/htmlhelp/Software-MPI/docs/Synqnet/Method/evtrst2.htm
file:///C|/htmlhelp/Software-MPI/topics/error_limits.htm
file:///C|/htmlhelp/Software-MPI/topics/error_limits.htm
file:///C|/htmlhelp/Software-MPI/docs/Event/Topics/note_evtty.htm

MPIEventStatusINFO_COUNT_MAX

MPIEventStatusINFO_COUNT_MAX

Definition

 #define MPIEventStatusINFO_COUNT_MAX (16)

Description

MEIEventStatusINFO_COUNT_MAX defines the size of the MPIEventStatus.info[] array.

See Also

MPIEventStatus | MPIEventMgr | MPINotify

file:///C|/htmlhelp/Software-MPI/docs/Event/DataType/stsinfcntmax4.htm9/25/2006 10:01:52 AM

file:///C|/htmlhelp/Software-MPI/docs/EventMgr/evtmgr_out.htm
file:///C|/htmlhelp/Software-MPI/docs/Notify/nfy_out.htm

	Event Objects
	Methods
	mpiEventStatusGet
	mpiEventStatusSet
	mpiEventTypeName

	Data Types
	MPIEventMessage
	MEIEventNotifyData
	MPIEventStatus
	MEIEventStatusInfo

	Constants
	MPIEventType / MEIEventType
	MPIEventStatusINFO_COUNT_MAX

