
Control Objects

Control Objects
Introduction

A Control object manages a motion controller device. The device is typically a single
board residing in a PC or an embedded system. A control object can read and write
device memory through one of a variety of methods: I/O port, memory mapped or
device driver.

For the case where the application and the motion controller device exist on two
physically separate platforms connected by a LAN or serial line, the application creates
a client control object which communicates via remote procedure calls with a server.

Unlike the methods of all other objects in the MPI, Control object methods are not
thread-safe.

Are you using TCP/IP and Sockets? If yes, click here.

Methods

Create, Delete, Validate Methods
 mpiControlCreate Create Control object

 mpiControlDelete Delete Control object

 mpiControlValidate Validate Control object

Configuration and Information Methods
 mpiControlAddress Get original address of Control object (when it was created)

 mpiControlConfigGet Get Control config

 mpiControlConfigSet Set Control config

 meiControlFPGADefaultGet

 meiControlFPGAFileOverride

 meiControlExtMemAvail

 mpiControlFlashConfigGet Get Control flash config

 mpiControlFlashConfigSet Set Control flash config

 meiControlGateGet Get the closed state (TRUE or FALSE)

 meiControlGateSet Set the closed state (TRUE or FALSE)

 meiControlInfo

 mpiControlIoGet

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/cnl_out.htm (1 of 3) [7/22/2004 4:26:03 PM]

Control Objects

 mpiControlIoSet

 meiControlIoBitGet

 meiControlIoBitSet

 meiControlSampleCounter

 meiControlSamplestoSeconds Converts samples to seconds

 meiControlSampleWait

 meiControlSecondstoSamples Converts seconds to samples

 mpiControlType Get type of Control object (used to create Command object)

Memory Methods
 mpiControlMemory Get address of Control memory

 mpiControlMemoryAlloc Allocate bytes of firmware memory

 mpiControlMemoryCount Get number of bytes available in firmware

 mpiControlMemoryFree Free bytes of firmware memory

 mpiControlMemoryGet Copy count bytes of Control memory to application memory

 mpiControlMemorySet Copy count bytes of application memory to Control memory

Relational Methods
 meiControlPlatform

Action Methods
 mpiControlCycleWait Wait for Control to execute count cycles

 mpiControlInit Initialize Control object

 mpiControlInterruptEnable Enable interrupts to Control object

 mpiControlInterruptWait Wait for controller interrupt

 mpiControlInterruptWake Wake all threads waiting for controller interrupt

 mpiControlReset Reset controller hardware

 meiControlSampleWait Specify how many samples the host waits for, while the XMP
executes

 meiControlVersionMismatchOveride

Data Types

 MPIControlAddress

 MPIControlConfig / MEIControlConfig

 MEIControlFPGA

 MEIControlInfo

 MEIControlInfoDriver

 MEIControlInfoFirmware

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/cnl_out.htm (2 of 3) [7/22/2004 4:26:03 PM]

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/DataType/fpga2.htm

Control Objects

 MEIControlInfoHardware

 MEIControlInfoMpi

 MEIControlInfoPld

 MEIControlInfoRincon

 MEIControlInput

 MPIControlIo

 MEIControlIoBit

 MPIControlIoWords

 MPIControlMessage / MEIControlMessage

 MPIControlMemoryType

 MEIControlOutput

 MEIControlTrace

 MPIControlType

Constants

 MPIControlMAX_AXES

 MPIControlMAX_COMPENSATORS

 MPIControlMAX_RECORDERS

 MPIControlMIN_AXIS_FRAME_COUNT

 MEIControlSTRING_MAX

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/cnl_out.htm (3 of 3) [7/22/2004 4:26:03 PM]

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/DataType/mes3.htm
file:///D|/pdfs/030100/html/Software-MPI/docs/Control/DataType/mes3.htm#mei

mpiControlCreate

mpiControlCreate

Declaration MPIControl mpiControlCreate(MPIControlType type,

 MPIControlAddress *address)

Required Header stdmpi.h

Description ControlCreate creates a Control object of the specified type and type-specific
address. ControlCreate is the equivalent of a C++ constructor.

The type parameter determines the form of the address parameter:

If the "type" parameter is Then the form of the "address" parameter is

MPIControlTypeDEFAULT implementation-specific

MPIControlTypeMAPPED MPIControlAddress.mapped

MPIControlTypeDEVICE MPIControlAddress.device

MPIControlTypeCLIENT MPIControlAddress.client

Note:This constructor does not reset or initialize the motion control device.

About MPIControlTypes:

If
MPIControlType
is

And
MPIControlAddress is

Then the
Board Number is

And the
“address” parameter
to be used is

DEFAULT Null
address

0
address.number

default address parameter
default address parameter

DEVICE Null
address

0
address.number

default device driver
address.type.device (if
address.type.device is Null, then default
device driver)

CLIENT address specified by
server

address.type.client
(NOTE: address.number should be set to
zero)

1. If the type is DEFAULT, then the address structure (if supplied) is referenced only for the board
number. Note that even if the default type is DEVICE, the default device driver will be used and
address.type.device will not be used.

2. If the type is explicitly DEVICE, and the address is provided, then address.number will be used. If
address.type.device is NULL, then the default device driver will be used. If address.type.device is not
NULL, then the specified driver (DEVICE) will be used.

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/create1.htm (1 of 2) [7/22/2004 3:14:13 PM]

mpiControlCreate

Sample Code

In general, if the caller specifies an explicit type (i.e., not DEFAULT), then the caller must
completely fill out the address.type structure.
A simple case that will work for almost anyone who wants to use board #0:

mpiControlCreate(MPIControlTypeDEFAULT, NULL);

A simple case where board #1 is desired is:

 {
 MPIControlAddress address;
 address.number = 1;
 mpiControlCreate(MPIControlTypeDEFAULT, &address);
 }

Since the default MPIControlType = MPIControlTypeDEVICE, the address may be on the
stack with garbage for the device driver name. This isn’t a problem, however, because
the board number is the only field in address that will be used when the caller specifies
the DEFAULT MPIControlType.

Return Values
handle to a Control object

MPIHandleVOID if the object could not be created

See Also MPIControl | MPIControlAddress | MPIControlType | mpiControlValidate
mpiControlInit | mpiControlDelete

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/create1.htm (2 of 2) [7/22/2004 3:14:13 PM]

mpiControlDelete

mpiControlDelete

Declaration long mpiControlDelete(MPIControl control);

Required Header stdmpi.h

Description ControlDelete deletes a control object and invalidates its handle. ControlDelete is
the equivalent of a C++ destructor.

Return Values
MPIMessageOK if ControlDelete successfully deletes a Control object and invalidates its handle

See Also mpiControlCreate | mpiControlValidate

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/delete1.htm [7/22/2004 3:14:13 PM]

mpiControlValidate

mpiControlValidate

Declaration long mpiControlValidate(MPIControl control);

Required Header stdmpi.h

Description ControlValidate validates the control object and its handle.

Return Values
MPIMessageOK if Control is a handle to a valid object.

See Also mpiControlCreate | mpiControlDelete

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/valid1.htm [7/22/2004 3:14:13 PM]

mpiControlAddress

mpiControlAddress

Declaration long mpiControlAddress(MPIControl control,

 MPIControlAddress *address)

Required Header stdmpi.h

Description When a Control object (control) is created, an address is used. ControlAddress writes
this address to the contents of address.

Return Values

MPIMessageOK
if ControlAddress successfully writes the address (used when control was created) to
the contents of address

See Also

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/ads1.htm [7/22/2004 3:14:14 PM]

mpiControlConfigGet

mpiControlConfigGet

Declaration long mpiControlConfigGet(MPIControl control,

 MPIControlConfig *config,

 void *external)

Required Header stdmpi.h

Description ControlConfigGet gets the configuration of a Control object (control) and writes it
into the structure pointed to by config, and also writes it into the implementation-
specific structure pointed to by external (if external is not NULL).

The configuration information in external is in addition to the configuration
information in config, i.e, the configuration information in config and in external is
not the same information. Note that config or external can be NULL (but not both
NULL).

XMP Only
external either points to a structure of type MEIControlConfig{} or is NULL.

Sample Code
/*
 Write a value to element index of the user buffer.
 Make sure to save topology to flash before doing this.
*/
void write2UserBuffer(MPIControl control, long value, long index)
{
 MPIControlConfig config;
 MEIControlConfig external;
 long returnValue;

 if((index < MEIXmpUserDataSize) && (index >= 0))
 {
 /* Make sure to save topology to flash before doing this */
 returnValue = mpiControlConfigGet(control,
 &config,
 &external);
 msgCHECK(returnValue);

 external.UserBuffer.Data[index] = value;

 returnValue = mpiControlConfigSet(control,
 &config,
 &external);
 msgCHECK(returnValue);
 }
}

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/cfget1.htm (1 of 2) [7/22/2004 3:14:14 PM]

mpiControlConfigGet

Return Values

MPIMessageOK
if ControlConfigGet successfully gets the control configuration and writes it in the
structure(s)

See Also mpiControlConfigSet | MEIControlConfig |
Special Note on Dynamic Allocation of External Memory Buffers.

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/cfget1.htm (2 of 2) [7/22/2004 3:14:14 PM]

mpiControlConfigSet

mpiControlConfigSet

Declaration long mpiControlConfigSet(MPIControl control,

 MPIControlConfig *config,

 void *external)

Required Header stdmpi.h

Description ControlConfigSet sets (writes) the Control object’s (control) configuration using data
from the structure pointed to by config, and also using data from the implementation-
specific structure pointed to by external (if external is not NULL).

The configuration information in external is in addition to the configuration
information in config, i.e, the configuration information in config and in external is
not the same information. Note that config or external can be NULL (but not both
NULL).

XMP Only
external either points to a structure of type MEIControlConfig{} or is NULL.

Sample Code
/*
 Write a value to element index of the user buffer.
 Make sure to save topology to flash before doing this.
*/
void write2UserBuffer(MPIControl control, long value, long index)
{
 MPIControlConfig config;
 MEIControlConfig external;
 long returnValue;

 if((index < MEIXmpUserDataSize) && (index >= 0))
 {
 /* Make sure to save topology to flash before doing this */
 returnValue = mpiControlConfigGet(control,
 &config,
 &external);
 msgCHECK(returnValue);

 external.UserBuffer.Data[index] = value;

 returnValue = mpiControlConfigSet(control,
 &config,
 &external);
 msgCHECK(returnValue);
 }
}

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/cfset1.htm (1 of 2) [7/22/2004 3:14:15 PM]

mpiControlConfigSet

Return Values

MPIMessageOK
if ControlConfigSet successfully writes the Control object’s configuration using data
from the structure(s)

See Also mpiControlConfigGet | MEIControlConfig |
Special Note on Dynamic Allocation of External Memory Buffers.

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/cfset1.htm (2 of 2) [7/22/2004 3:14:15 PM]

meiControlExtMemAvail

meiControlExtMemAvail

Declaration long meiControlExtMemAvail(MPIControl control,

 long *size)

Required Header stdmei.h

Description ControlExtMemAvail gets the amount of external memory available on an XMP-
Series controller. It puts the number of words (16 bit) in the location pointed to by
size.

 control a handle to the Control object

 *size a pointer to the available memory words returned by the method

Return Values

MPIMessageOK
if ControlExtMemAvail successfully gets and writes the available external memory
words into *size

See Also MPIControlConfig

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/extmemavl2.htm [7/22/2004 3:14:16 PM]

mpiControlFlashConfigGet

mpiControlFlashConfigGet

Declaration long mpiControlFlashConfigGet(MPIControl control,

 void *flash,
 MPIControlConfig *config,

 void *external)

Required Header stdmpi.h

Description ControlFlashConfigGet gets the flash configuration of a Control object (control) and
writes it into the structure pointed to by config, and also writes it into the
implementation-specific structure pointed to by external (if external is not NULL).

The Control’s flash configuration information in external is in addition to the
Control’s flash configuration information in config, i.e., the flash configuration
information in config and in external is not the same information. Note that config or
external can be NULL (but not both NULL).

XMP Only

external either points to a structure of type MEIControlConfig{} or is NULL. flash is
either an MEIFlash handle or MPIHandleVOID. If flash is MPIHandleVOID, an MEIFlash
object will be created and deleted internally.

Sample Code
/*
 Write a value to element index of the user buffer.
 Make sure to save topology to flash before doing this.
*/
void write2UserBufferFlash(MPIControl control, long value, long index)
{
 MPIControlConfig config;
 MEIControlConfig external;
 long returnValue;

 if((index < MEIXmpUserDataSize) && (index >= 0))
 {
 /* Make sure to save topology to flash before doing this */
 returnValue = mpiControlFlashConfigGet(control,
 MPIHandleVOID,
 &config,
 &external);
 msgCHECK(returnValue);

 external.UserBuffer.Data[index] = value;

 returnValue = mpiControlFlashConfigSet(control,
 MPIHandleVOID,
 &config,

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/flacfget1.htm (1 of 2) [7/22/2004 3:14:17 PM]

mpiControlFlashConfigGet

 &external);
 msgCHECK(returnValue);
 }
}

Return Values

MPIMessageOK
if ControlFlashConfigGet successfully gets the Control’s flash configuration and
writes it into the structure(s)

See Also MEIFlash | mpiControlFlashConfigSet | | MEIControlConfig

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/flacfget1.htm (2 of 2) [7/22/2004 3:14:17 PM]

file:///D|/pdfs/030100/html/Software-MPI/docs/Flash/fla_out.htm

mpiControlFlashConfigSet

mpiControlFlashConfigSet

Declaration long mpiControlFlashConfigSet(MPIControl control,

 void *flash,
 MPIControlConfig *config,

 void *external)

Required Header stdmpi.h

Description ControlFlashConfigSet sets (writes) the flash configuration of a Control object
(control), using data from the structure pointed to by config, and also using data from
the implementation-specific structure pointed to by external (if external is not
NULL).

The Control’s flash configuration information in external is in addition to the
Control’s flash configuration information in config, i.e., the flash configuration
information in config and in external is not the same information. Note that config or
external can be NULL (but not both NULL).

XMP Only

external either points to a structure of type MEIControlConfig{} or is NULL. flash is
either an MEIFlash handle or MPIHandleVOID. If flash is MPIHandleVOID, an MEIFlash
object will be created and deleted internally.

Sample Code
/*
 Write a value to element index of the user buffer.
 Make sure to save topology to flash before doing this.
*/
void write2UserBufferFlash(MPIControl control, long value, long index)
{
 MPIControlConfig config;
 MEIControlConfig external;
 long returnValue;

 if((index < MEIXmpUserDataSize) && (index >= 0))
 {
 /* Make sure to save topology to flash before doing this */
 returnValue = mpiControlFlashConfigGet(control,
 MPIHandleVOID,
 &config,
 &external);
 msgCHECK(returnValue);

 external.UserBuffer.Data[index] = value;

 returnValue = mpiControlFlashConfigSet(control,
 MPIHandleVOID,

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/flacfset1.htm (1 of 2) [7/22/2004 3:14:17 PM]

mpiControlFlashConfigSet

 &config,
 &external);
 msgCHECK(returnValue);
 }
}

Return Values

MPIMessageOK
if ControlFlashConfigSet successfully sets (writes) the Control’s flash configuration
using data from the structure(s)

See Also MEIFlash | mpiControlFlashConfigGet | | MEIControlConfig

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/flacfset1.htm (2 of 2) [7/22/2004 3:14:17 PM]

file:///D|/pdfs/030100/html/Software-MPI/docs/Flash/fla_out.htm

meiControlFPGADefaultGet

meiControlFPGADefaultGet

Declaration
long meiFPGADefaultGet(MPIControl control,

 MEIPlatformSocketInfo *socketInfo,
 MEIControlFPGA *fpga)

Required Header stdmei.h

Description FPGADefaultGet creates a default FPGA filename based on the socketInfo.

 control a handle to the Control object

 *socketInfo tells the function which type of FPGA is physically on the board.

*fpga a pointer to a MEIControlFPGA object that contains a string that is the filename. To

get the proper fpga, pass in control and valid socketInfo.

Return Values

MPIMessageOK
if ControlFPGADefaultGet successfully gets creates a default FPGA filename.

See Also MEIControlFPGA

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/fpgadftget2.htm [7/22/2004 3:14:16 PM]

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/DataType/fpga2.htm
file:///D|/pdfs/030100/html/Software-MPI/docs/Control/DataType/fpga2.htm

meiControlFPGADefaultOverride

meiControlFPGADefaultOverride

Declaration
long meiFPGADefaultOverride(MPIControl control,

 MEIControlFPGA *fpga,

 const char *overrideFile,
 MEIPlatformSocketInfo *socketInfo)

Required Header stdmei.h

Description FPGADefaultOverride checks to see if the socketInfo fits the board's physical
configuration. If so, the FPGA filename is replaced with the overrideFile. This allows
the user to specify FPGA files instead of using the MPI's default FPGA file.

 control a handle to the Control object.

 *fpga a pointer to MEIControlFPGA struct that contains the current file name string.

 *overrideFile is a character string that contains a desired filename.

 *socketInfo is a pointer to valid socket information.

Return Values

MPIMessageOK
if ControlFPGAOverride successfully replaces the default FPGA file with the desired
overrideFile.

See Also MEIControlFPGA

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/fpgadftovr2.htm [7/22/2004 3:14:16 PM]

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/DataType/fpga2.htm
file:///D|/pdfs/030100/html/Software-MPI/docs/Control/DataType/fpga2.htm

meiControlGateGet

meiControlGateGet

Declaration long meiControlGateGet(MPIControl control,

 long gate,
 long *closed)

Required Header stdmei.h

Description ControlGateGet gets the closed state (TRUE or FALSE) from the specified control
gate (0 to 31).

Return Values

MPIMessageOK
if ControlGateGet successfully gets (reads) the state from the control gate and puts it
into closed.

See Also meiControlGateSet

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/gatget2.htm [7/22/2004 3:14:17 PM]

meiControlGateSet

meiControlGateSet

Declaration long meiControlGateSet(MPIControl control,

 long gate,
 long closed)

Required Header stdmei.h

Description ControlGateSet sets the closed state (TRUE or FALSE) for the specified control gate
(0 to 31).

Return Values
MPIMessageOK if ControlGateSet successfully sets (writes) the closed state into the control gate.

See Also meiControlGateGet

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/gatset2.htm [7/22/2004 3:14:17 PM]

meiControlInfo

meiControlInfo

Declaration long meiControlInfo(MPIControl control,

 MEIControlInfo *info);

Required Header stdmei.h

Description ControlInfo retrieves information about an MEI motion controller.

 control a handle to the Control object

*info a pointer to MEIControlInfo that gets completed with the appropriate controller

information.

Return Values
MPIMessageOK If meiControlInfo successfully retrieves the controller information.

MPIHandleVOID if control is invalid

See Also

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/inf2.htm [7/22/2004 3:14:18 PM]

mpiControlIoGet

mpiControlIoGet

Declaration long mpiControlIoGet(MPIControl control,

 MPIControlIo *io);

Required Header stdmpi.h

Description ControlIoGet reads the states of a controller's digital inputs and writes them into a
structure pointed to by io. Some controller models have local digital I/O. Please see
the controller hardware documentation for details.

 control a handle to a Control object

 *io a pointer to a structure containing the digital input and output values.

Return Values

MPIMessageOK
if ControlIoGet successfully gets the I/O bits from controller and puts
(writes) them in the structure.

MPIMessageARG_INVALID if the io pointer points to NULL.

See Also mpiControlIoSet | MPIControlInput | MPIControlOutput

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/ioget1.htm [7/22/2004 3:14:18 PM]

mpiControlIoSet

mpiControlIoSet

Declaration long mpiControlIoGet(MPIControl control,

 MPIControlIo *io);

Required Header stdmpi.h

Description ControlIoSet writes the states of a controller's digital I/O using data from a structure
pointed to by io. Some controller models have local digital I/O. Please see the
controller hardware documentation for details.

 control a handle to a Control object

 *io a pointer to a structure containing the digital input and output values.

Return Values

MPIMessageOK
if ControlIoSet successfully gets the I/O bits from controller and puts (writes) them in
the structure

See Also mpiControlIoGet | MPIControlInput | MPIControlOutput

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/ioset1.htm [7/22/2004 3:14:19 PM]

meiControlIoBitGet

meiControlIoBitGet

Declaration meiControlIoBitGet(MPIControl control,

 MEIControlIoBit bit,

 long *value);

Required Header stdmpi.h

Description ControlIoBitGet reads the state of a controller digital input bit and writes it into a
long pointed to by value. Some controller models have local digital I/O. Please see the
controller hardware documentation for details

 control a handle to the Control object

 bit an enumerated bit number

 *value a pointer to a long. The value contains the state of the bit.

Return Values

MPIMessageOK
if ControlIoBitGet successfully gets the Control configuration and writes it into the
structure(s).

See Also meiControlIoBitSet | MEIControlIoBit

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/iobitget2.htm [7/22/2004 3:14:19 PM]

meiControlIoBitSet

meiControlIoBitSet

Declaration meiControlIoBitSet(MPIControl control,

 MEIControlIoBit bit,

 long *value);

Required Header stdmpi.h

Description ControlIoBitSet writes the state of a controller digital output bit using data from a
value pointed to by a long. Some controller models have local digital I/O. Please see
the controller hardware documentation for details

 control a handle to the Control object

 bit an enumerated bit number

 *value a pointer to a long. The value contains the state of the bit.

Return Values

MPIMessageOK
if ControlIoBitSet successfully sets the Control configuration and writes it into the
structure(s).

See Also meiControlIoBitGet | MEIControlIoBit

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/iobitset2.htm [7/22/2004 3:14:20 PM]

meiControlSampleCounter

meiControlSampleCounter

Declaration long meiControlSampleCounter(MPIControl control,

 long *sampleCounter)

Required Header stdmei.h

Description ControlSampleCounter writes the number of servo cycles (samples) that have
occured since the last sample counter reset/rollover, to the sampleCounter . When the
user resets the controller, the sample counter will also be reset. Since the sample
counter is a long, if the sample counter is 2147483647 it will roll over on the next
servo cycle to -2147483648.

Return Values
MPIMessageOK if the sample counter could be read

See Also meiControlSecondstoSamples | meiControlSamplestoSeconds | meiControlSampleWait

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/samctr2.htm [7/22/2004 3:14:20 PM]

meiControlSamplestoSeconds

meiControlSamplesToSeconds

Declaration long meiControlSamplesToSeconds(MPIControl control,

 long samples,
 float *seconds)

Required Header stdmei.h

Description ControlSamplesToSeconds writes to seconds the number of seconds it takes to
process samples number of samples (at the current sample rate). Use this function to
convert samples to seconds.

Return Values
MPIMessageOK if ControlSampleToSeconds successfully converts the samples to seconds.

See Also meiControlSecondstoSamples | meiControlSampleCounter

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/samtosec2.htm [7/22/2004 3:14:20 PM]

meiControlSampleWait

meiControlSampleWait

Declaration long meiControlSampleWait(MPIControl control,

 long count)

Required Header stdmpi.h

Description ControlSampleWait waits for count samples while the XMP motion controller
(associated with control) executes. While the host waits, the host gives up its time
slice and continuously verifies that the XMP firmware is operational.

Return Values

MPIMessageOK
if ControlSampleWait successfully waits for count samples while the XMP motion
controller executes

See Also meiControlSamplestoSeconds | meiControlSecondstoSamples | meiControlSampleCounter |

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/samwt2.htm [7/22/2004 3:14:21 PM]

meiControlSecondstoSamples

meiControlSecondstoSamples

Declaration long meiControlSecondsToSamples(MPIControl control,

 float seconds,
 long *samples)

Required Header stdmei.h

Description ControlSecondsToSamples writes to samples the number of servo cycles that will
take place in seconds number of seconds (at the current sample rate). Use this function
to convert seconds to samples.

Return Values
MPIMessageOK if ControlSecondsToSamples successfully converts the seconds to samples.

See Also meiControlSamplestoSeconds | meiControlSampleCounter | meiControlSampleWait

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/sectosam2.htm [7/22/2004 3:14:20 PM]

mpiControlType

mpiControlType

Declaration long mpiControlType(MPIControl control,

 MPIControlType *type)

Required Header stdmpi.h

Description When a Control object (control) is created, a type is used. ControlType writes this
type to the contents of type.

Return Values

MPIMessageOK
if ControlType successfully gets the type (used when control was created) to the
contents of type

See Also

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/ty1.htm [7/22/2004 3:14:21 PM]

mpiControlMemory

mpiControlMemory

Declaration long mpiControlMemory(MPIControl control,

 void **memory,
 void **external)

Required Header stdmpi.h

Description ControlMemory sets (writes) an address (used to access a Control object’s memory)
to the contents of memory.

If external is not NULL, the contents of external are set to an implementation-specific
address that typically points to a different section or type of Control memory other
than memory (e.g., to external or off-chip memory). These addresses (or addresses
calculated from them) are passed as the src argument to mpiControlMemoryGet(...)
and the dst argument to mpiControlMemorySet(...).

Sample Code
/* Simple code to increment userbuffer[0] */
 MEIXmpData *firmware;
 MEIXmpBufferData *buffer;

 long returnValue, tempBuffer;

 /* Get memory pointers */
 returnValue =
 mpiControlMemory(control,
 &firmware,
 &buffer);
 msgCHECK(returnValue);

 returnValue = mpiControlMemoryGet(control,
 &tempBuffer,
 &buffer->UserBuffer.Data[0],
 sizeof(buffer->UserBuffer.Data[0]));
 msgCHECK(returnValue);

 tempBuffer++;

 returnValue = mpiControlMemorySet(control,
 &buffer->UserBuffer.Data[0],
 &tempBuffer,
 sizeof(buffer->UserBuffer.Data[0]));
 msgCHECK(returnValue);

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/mem1.htm (1 of 2) [7/22/2004 3:14:12 PM]

mpiControlMemory

Return Values

MPIMessageOK
if ControlMemory successfully writes the address(es) (used to access Control
memory, and optionally to access another section of Control memory) to the contents
of memory (and to external, if external is not Null)

See Also mpiControlMemoryGet | mpiControlMemorySet | mpiControlMemoryAlloc |
mpiControlMemoryCount | mpiControlMemoryFree

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/mem1.htm (2 of 2) [7/22/2004 3:14:12 PM]

mpiControlMemoryAlloc

mpiControlMemoryAlloc

Declaration long mpiControlMemoryAlloc(MPIControl control,

 MPIControlMemoryType type,

 long count,
 void **memory)

Required Header stdmpi.h

Description ControlMemoryAlloc allocates count bytes of firmware memory [of type type on a
Control object (control)] and writes the host address (of the allocated firmware
memory) to the location pointed to by memory.

Return Values

MPIMessageOK
if ControlMemoryAlloc successfully allocates firmware memory and writes the host
address of that firmware memory to memory.

See Also mpiControlMemoryGet | mpiControlMemorySet | mpiControlMemory |
mpiControlMemoryCount | mpiControlMemoryFree

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/memalc1.htm [7/22/2004 3:14:22 PM]

mpiControlMemoryCount

mpiControlMemoryCount

Declaration long mpiControlMemoryCount(MPIControl control,

 MPIControlMemoryType type,

 long *count)

Required Header control.h

Description ControlMemoryCount writes the number of bytes of firmware memory [on a
Control object (control, of type type) that are available to be allocated] to the location
pointed to by count.

Return Values

MPIMessageOK
if ControlMemoryCount successfully writes the number of bytes of firmware memory
(that are available to be allocated) to count.

See Also

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/memcnt1.htm [7/22/2004 3:14:22 PM]

mpiControlMemoryFree

mpiControlMemoryFree

Declaration long mpiControlMemoryFree(MPIControl control,

 MPIControlMemoryType type,

 long count,
 void *memory)

Required Header stdmpi.h

Description ControlMemoryFree frees count bytes of firmware memory on a Control object
(control, of type type) starting at host address memory.

Return Values

MPIMessageOK
if ControlMemoryAlloc successfully frees count bytes of firmware memory on a
Control object

See Also mpiControlMemoryGet | mpiControlMemorySet | mpiControlMemoryAlloc |
mpiControlMemoryCount | mpiControlMemory

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/memfre1.htm [7/22/2004 3:14:22 PM]

mpiControlMemoryGet

mpiControlMemoryGet

Declaration long mpiControlMemoryGet(MPIControl control,

 void *dst,
 void *src,
 long count)

Required Header stdmpi.h

Description ControlMemoryGet gets count bytes of control memory (starting at address src) and
puts (writes) them in application memory (starting at address dst).

Sample Code
/* Simple code to increment userbuffer[0] */
 MEIXmpData *firmware;
 MEIXmpBufferData *buffer;

 long returnValue, tempBuffer;

 /* Get memory pointers */
 returnValue =
 mpiControlMemory(control,
 &firmware,
 &buffer);
 msgCHECK(returnValue);

 returnValue = mpiControlMemoryGet(control,
 &tempBuffer,
 &buffer->UserBuffer.Data[0],
 sizeof(buffer->UserBuffer.Data[0]));
 msgCHECK(returnValue);

 tempBuffer++;

 returnValue = mpiControlMemorySet(control,
 &buffer->UserBuffer.Data[0],
 &tempBuffer,
 sizeof(buffer->UserBuffer.Data[0]));
 msgCHECK(returnValue);

Return Values

MPIMessageOK
if ControlMemoryGet successfully gets count bytes of control memory and puts
(writes) them in application memory

See Also mpiControlMemorySet | mpiControlMemory | mpiControlMemoryAlloc |
mpiControlMemoryCount | mpiControlMemoryFree

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/memget1.htm (1 of 2) [7/22/2004 3:14:21 PM]

mpiControlMemorySet

mpiControlMemorySet

Declaration long mpiControlMemorySet(MPIControl control,

 void *dst,
 void *src,
 long count)

Required Header stdmpi.h

Description ControlMemorySet sets (writes) count bytes of application memory (starting at
address src) to control memory (starting at address dst).

Sample Code
/* Simple code to increment userbuffer[0] */
 MEIXmpData *firmware;
 MEIXmpBufferData *buffer;

 long returnValue, tempBuffer;

 /* Get memory pointers */
 returnValue =
 mpiControlMemory(control,
 &firmware,
 &buffer);
 msgCHECK(returnValue);

 returnValue = mpiControlMemoryGet(control,
 &tempBuffer,
 &buffer->UserBuffer.Data[0],
 sizeof(buffer->UserBuffer.Data[0]));
 msgCHECK(returnValue);

 tempBuffer++;

 returnValue = mpiControlMemorySet(control,
 &buffer->UserBuffer.Data[0],
 &tempBuffer,
 sizeof(buffer->UserBuffer.Data[0]));
 msgCHECK(returnValue);

Return Values

MPIMessageOK
if ControlMemorySet successfully sets (writes) count bytes of application memory to
control memory

See Also mpiControlMemoryGet | mpiControlMemory | mpiControlMemoryAlloc |
mpiControlMemoryCount | mpiControlMemoryFree

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/memset1.htm (1 of 2) [7/22/2004 3:14:21 PM]

meiControlPlatform

meiControlPlatform

Declaration
MEIPlatform meiControlPlatform(MPIControl control)

Required Header stdmei.h

Description ControlPlatform returns a handle to the Platform object with which the control is
associated.

 control a handle to the Control object

Return Values
MPIPlatform handle to a Platform object

MPIHandleVOID if control is invalid

See Also mpiControlCreate

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/pfm2.htm [7/22/2004 3:14:23 PM]

file:///D|/pdfs/030100/html/Software-MPI/docs/Platform/pfm_out.htm

meiControlCycleWait

meiControlCycleWait

Declaration long meiControlCycleWait(MPIControl control,

 long count)

Required Header stdmei.h

Description ControlCycleWait waits for the XMP motion controller (control) to execute for
count background cycles. The host will continuously verify that the XMP firmware is
operational, and the host will give up its time slice as it waits (for the controller to
execute the background cycles).

Return Values
MPIMessageOK after the motion controller successfully executes for count cycles

See Also

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/cycwt2.htm [7/22/2004 3:14:23 PM]

mpiControlInit

mpiControlInit

mpiControlInit

Declaration
long mpiControlInit(MPIControl control)

Required Header stdmpi.h

Description ControlInit initializes the motion control device control. ControlInit must be called at
least once after a control object has been created and before any other mpiControl
methods are called [with the exception of mpiControlDelete(...)].

Return Values
MPIMessageOK if ControlInit successfully initializes the motion control device control

See Also mpiControlDelete

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/init1.htm [7/22/2004 3:14:13 PM]

mpiControlInterruptEnable

mpiControlInterruptEnable

Declaration long mpiControlInterruptEnable(MPIControl control,

 long enable)

Required Header stdmpi.h

Description If “enable” is TRUE, then ControlInterruptEnable enables interrupts from the
motion controller.

If "enable" is FALSE, then ControlInterruptEnable disables interrupts from the
motion controller.

Return Values

MPIMessageOK
if ControlInterruptEnable successfully enables (or disables) interrupts from the
motion controller

See Also mpiControlInteruptWait | mpiControlInteruptWake

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/intenb1.htm [7/22/2004 3:14:12 PM]

mpiControlInterruptWait

mpiControlInterruptWait

Declaration long mpiControlInterruptWait(MPIControl control,

 long *interrupted,
 MPIWait timeout)

Required Header stdmpi.h

Description ControlInterruptWait waits for an interrupt from the motion controller if interrupts
are enabled.

After the ControlInterruptWait method returns, if the location pointed to by
interrupted contains TRUE, then an interrupt has occurred.

After the ControlInterruptWait method returns, if the location pointed to by
interrupted contains FALSE, then no interrupt has occurred, and the return of
ControlInterruptWait was caused either by a call to mpiControlInterruptWake(...).

If timeout is MPIWaitPOLL (0), then ControlInterruptWait will return immediately.

If timeout is MPIWaitFOREVER (-1), then ControlInterruptWait will wait forever
for an interrupt.

Otherwise, ControlInterruptWait will wait timeout milliseconds for an interrupt.

NOTE: For Windows operating systems, only MPIWaitPOLL and
MPIWaitFOREVER are valid timeout values.

Return Values
MPIMessageOK if ControlInterruptWait waits for an interrupt from the motion controller

MPIMessageTIMEOUT if ControlInterruptWait did not receive an interrupt within timeout ms.

See Also mpiControlInterruptWake | mpiControlInteruptEnable

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/intwt1.htm [7/22/2004 3:14:23 PM]

file:///D|/pdfs/030100/html/Software-MPI/docs/Global/DataType/wt1.htm

mpiControlInterruptWake

mpiControlInterruptWake

Declaration
long mpiControlInterruptWake(MPIControl control)

Required Header stdmpi.h

Description ControlInterruptWake wakes all threads waiting for an interrupt from the motion
controller control [as a result of a call to mpiControlInterruptWait(...)]. The waking
thread(s) will return from the call with no interrupt indicated.

Return Values

MPIMessageOK
if ControlInterruptWake successfully wakes all threads waiting for an interrupt from
the motion controller

See Also mpiControlInterruptWait | mpiControlInteruptEnable

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/intwk1.htm [7/22/2004 3:14:23 PM]

mpiControlReset

mpiControlReset

Declaration long mpiControlReset(MPIControl control)

Required Header stdmpi.h

Description ControlReset resets the motion controller (control) board.

Return Values
MPIMessageOK if ControlReset successfully resets the motion controller board

See Also

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/rst1.htm [7/22/2004 3:14:24 PM]

meiControlVersionMismatchOveride

meiControlVersionMismatchOveride

Declaration long meiControlVersionMismatchOveride(MPIControl control);

Required Header stdmei.h

Description ControlMismatchOveride overrides the version mismatch between the MPI and the
Xmp.

This function is reserved for MEI use only and should not be used by a customer.

Return Values

MPIMessageOK
if the motion controller successfully overrides the version mismatch between the MPI
and the Xmp.

See Also

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Method/vermismatchovr2.htm [7/22/2004 3:14:24 PM]

MPIControlAddress

MPIControlAddress

MPIControlAddress
 typedef struct MPIControlAddress {

 long number; /* controller number */

 union {
 void *mapped; /* memory address */
 unsigned long ioPort; /* I/O port number */
 char *device; /* device driver name */
 struct {
 char *name; /* image file name */
 MPIControlFileType type; /* image file type */
 } file;
 struct {
 char *server; /* IP address: host.domain.com */
 long port; /* socket number */
 } client;
 } type;
} MPIControlAddress;

Description ControlAddress is a structure that specifies the location of the controller that to be
accessed when mpiControlCreate() is called. Please refer to the documentation for
mpiControlCreate() to see how to use this structure.

 number The controller number in the computer

 type A union that holds information about controllers on non-local computers.

See Also

 MPIControl | MPIControlType | mpiControlCreate

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/DataType/ads1.htm [7/22/2004 3:14:12 PM]

MPIControlConfig and MEIControlConfig

MPIControlConfig / MEIControlConfig

MPIControlConfig
 typedef struct MPIControlConfig {

 long axisCount;
 long axisFrameCount[MPIControlMAX_AXES];
 long captureCount;
 long compareCount;
 long compensatorCount;
 long compensatorPointCount[MPIControlMAX_COMPENSATORS];
 long cmdDacCount;
 long auxDacCount;
 long filterCount;
 long motionCount;
 long motorCount;
 long recorderCount;
 long recordCount[MPIControlMAX_RECORDERS];
 long sequenceCount;
 long userVersion;
 long sampleRate;

} MPIControlConfig;

Description The ControlConfig structure specifies the controller configurations. It allocates the
number of resources and configurations for the controller's operation. The controller's
performance is inversely related to the DSP's load. The controller configuration
structure allows the user to disable/enable objects for optimum performance.

For SynqNet controllers, changing the sampleRate or TxTime will cause the SynqNet
network to be shutdown and re-initialized using the new sampleRate or TxTime
values.

axisCount Number of axis objects enabled for the controller. The controller's axis

object handles the trajectory calculations for command position. For
simple systems, set the axisCount equal to the motorCount.

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/DataType/cf3.htm (1 of 5) [7/22/2004 3:14:15 PM]

MPIControlConfig and MEIControlConfig

axisFrameCount[] An array of the number of frames for each axis frame buffer. Each
frame is the size of MEIXmpFrame. The controller's frame buffers are
dynamically allocated by changing the axisFrameCount. The default
axisFrameCount is reasonable for most applications. A larger frame
buffer may be required for long multi-point or cam motion profiles. The
valid range is from 16 to the available memory. Use
meiControlExtMemAvail(...) to determine the controller's available
memory. Be sure to leave some free memory for potential future
features.

captureCount Number of capture objects enabled for the controller. The controller
supports up to 16 captures. The controller's capture object manages the
hardware resources to latch a motor's position feedback, triggered by a
motor's input.

compareCount Number of compare objects enabled for the controller. The controller's
compare object manages the hardware resources to trigger a motor's
output, triggered by a comparison between the motor's feedback and a
pre-loaded position value.

compensatorCount This value defines the number of enabled compensators.

compensatorPointCount The number of points in the compensation table for each compensator.
See Determining Required Compensator Table Size for more
information.

An array of the number of points in the compensation table for each
compensator. Each point is 32bits. The controller's compensation tables
are dynamically allocated by changing the compensatorPointCount.
When using compensator objects, see Determining Required
Compensator Table Size for more information on a proper value for the
point count.

cmdDacCount Number of command DACs (digital to analog converter) enabled for
the controller. The controller's cmdDac transmits and scales a torque
demand value to a SynqNet servo drive or a physical DAC circuit.
There is one cmdDac per motor. Normally, the cmdDacCount should
be equal to the motorCount.

auxDacCount Number of auxilliary DACs (digital to analog converter) enabled for
the controller. The controller's auxDac transmits and scales a torque
demand value to a SynqNet servo drive or a physical DAC circuit.
Auxilliary DACs can be used for sinusoidal motor commutation, where
the cmdDac and auxDac provide the commutation phases. Or,
auxilliary DACs can be used for general purpose analog outputs. There
is one auxDac per motor.

filterCount Number of filter objects enabled for a controller. The filter object

handles the closed-loop servo calculations to control the motor. For
simple systems, set the filterCount equal to the motorCount.

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/DataType/cf3.htm (2 of 5) [7/22/2004 3:14:15 PM]

file:///D|/pdfs/030100/html/Software-MPI/docs/Compensator/Topics/determine_comp_tbl_siz.htm
file:///D|/pdfs/030100/html/Software-MPI/docs/Compensator/Topics/determine_comp_tbl_siz.htm
file:///D|/pdfs/030100/html/Software-MPI/docs/Compensator/Topics/determine_comp_tbl_siz.htm

MPIControlConfig and MEIControlConfig

motionCount Number of motion supervisor obejcts enabled for a controller. The
controller's motion supervisor handles coordination of motion and
events for an axis or group of axes. For simple systems, set the
motionCount equal to the axisCount.

motorCount Number of motor objects enabled for a controller. The controller's
motor object handles the interface to the servo or stepper drive,
dedicated I/O and general purpose motor related I/O. For simple
systems, the motorCount should equal the number of physical motors
connected to the controller (either directly or via SynqNet).

recorderCount Number of data recorder objects enabled for a controller. The
controller's recorder object handles collecting and buffering any data in
controller memory. The enabled data recorders can collect up to a total
of 32 addresses each sample. The valid range for the recordCount is 0
to 32.

recordCount An array of the number of records for each data recorder buffer. Each
data record is 32 bits. The controller's data recorder buffers can be
dynamically allocated by changing the recordCount. A larger data
recorder buffer may be required for higher sample rates, slow host
computers, when running via client/server, or when a large number of
data fields are being recorded. The valid range is 0 to the available
memory. Use meiControlExtMemAvail(…) to determine the
controller's available external memory.

sequenceCount Number of sequence objects enabled for the controller. The controller's

sequence object executes and manages a sequence of pre-compiled
controller commands.

userVersion A 32 bit user defined field. The userVersion can be used to mark a

firmware image with an identifier. This is useful if multiple controller
firmware images are saved to a file.

sampleRate Number of controller foreground update cycles per second. For
SynqNet controllers, this is also the cyclic update rate for the SynqNet
network. During the controller's foreground cycle, the axis trajectories
are calculated, the filters (closed-loop servo control) are calculated,
motion is coordinated, the SynqNet data buffers are updated, and other
time critical operations are performed.The default sample rate is 2000
(period = 500 microseconds). The minimum sampleRate for SynqNet
systems is 1000 (period = 1 millisecond). The maximum is dependent
on the controller hardware and processing load.

There are several factors that must be considered to find an appropriate
sampleRate for a system. The servo performance, the motion profile
accuracy, the SynqNet network cyclic rate, the SynqNet drive update
rates, controller background cycle update rate, and
controller/application performance.

For SynqNet systems, select a sampleRate that is a common multiple of
the SynqNet drives connected to the network. For example, if the drive
update rate is 8kHz, then appropriate controller sample rates are:
16000, 8000, 5333, 4000, 3200, 2667, 2286, 2000, 1778, 1600, 1455,

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/DataType/cf3.htm (3 of 5) [7/22/2004 3:14:15 PM]

MPIControlConfig and MEIControlConfig

1333, 1231, 1067, and 1000

MEIControlConfig

 typedef struct MEIControlConfig {
 long preFilterCount;
 long TxTime;
 MEIXmpPreFilter PreFilter[MEIXmpMAX_PreFilters];
 MEIXmpUserBuffer UserBuffer;
} MEIControlConfig;

Description
 preFilterCount This value defines the number of enabled pre-filters.

TxTime This value determines the controller's transmit time for the SynqNet data. The
units are a percentage of the sample period. The default is 75%. Smaller TxTime
values will reduce the latency between when the controller receives the data,
calculates the outputs, and transmits the data. If the TxTime is too small, the data
will be sent before the controller updates the buffer, which will cause a
TX_FAILURE event.

 PreFilter This array defines the configuration for each pre-filter.

UserBuffer This structure defines the controller's user buffer. This is used for custom features

that require a controller data buffer.

Sample Code
/*
 Write a value to element index of the user buffer.
 Make sure to save topology to flash before doing this.
*/
void write2UserBufferFlash(MPIControl control, long value, long index)
{
 MPIControlConfig config;
 MEIControlConfig external;
 long returnValue;

 if((index < MEIXmpUserDataSize) && (index >= 0))
 {
 /* Make sure to save topology to flash before doing this */
 returnValue = mpiControlFlashConfigGet(control,
 MPIHandleVOID,
 &config,
 &external);
 msgCHECK(returnValue);

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/DataType/cf3.htm (4 of 5) [7/22/2004 3:14:15 PM]

MPIControlConfig and MEIControlConfig

 external.UserBuffer.Data[index] = value;

 returnValue = mpiControlFlashConfigSet(control,
 MPIHandleVOID,
 &config,
 &external);
 msgCHECK(returnValue);
 }
}

See Also mpiControlConfigGet | mpiControlConfigSet | meiControlExtMemAvail |
Dynamic Allocation of External Memory Buffers

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/DataType/cf3.htm (5 of 5) [7/22/2004 3:14:15 PM]

MEIControlInfo

MEIControlInfo

MEIControlInfo
 typedef struct MEIControlInfo {

 MEIControlInfoMpi mpi;

 MEIControlInfoFirmware firmware;

 MEIControlInfoPld pld;

 MEIControlInfoRincon rincon;

 MEIControlInfoHardware hardware;

 MEIControlInfoDriver driver;

}MEIControlInfo;

Description ControlInfo contains the information about the motion controller being used.

mpi Information about the MPI software located on the host computer.

firmware Information about the Firmware running on the controller.

pld Information about the PLD located in the controller.

rincon Information about the Rincon FPGA located on the controller.

hardware Production information about the hardware stored in the controller.

driver Information about the Driver, running on the host, used to interface with the

controller.

See Also

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/DataType/inf2.htm [7/22/2004 3:14:18 PM]

MEIControlInfoDriver

MEIControlInfoDriver

Declaration
typedef struct MEIControlInfoDriver {
 char version[MEIControlSTRING_MAX];

} MEIControlInfoDriver;

Required Header stdmei.h

Description ControlInfoDriver is a structure that contains the version information of the
connected hardware.

version The version of the Driver the host uses to interface with the controller.

See Also

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/DataType/infdrvr2.htm [7/22/2004 3:14:26 PM]

MEIControlInfoFirmware

MEIControlInfoFirmware

Declaration
typedef struct MEIControlInfoFirmware {
 long version; /* MEIXmpVERSION_EXTRACT(SoftwareID) */
 long option; /* MEIXmpOPTION_EXTRACT(Option) */
 char revision; /* ('A' - 1) + MEIXmpREVISION_EXTRACT(SoftwareID) */
 long subRevision; /* MEIXmpSUB_REV_EXTRACT(Option) */
 long branchId;
} MEIControlInfoFirmware;

Required Header stdmei.h

Description ControlInfoFirmware is a structure that contains read-only version information for
the firmware running in the controller.

version The major version number for the controller's firmware. To be compatible with the
MPI library, this number must match the fwVersion in the MEIControlInfoMpi
structure.

option The firmware option number. Special or custom firmware is given a unique option

number. An application or user can identify optional firmware from this value.

revision The minor version number for the controller's firmware. Indicates a minor change or

bug fix to the firmware code.

subRevision The micro version value for the controller's firmware. Indicates a very minor change

or bug fix to the firmware code.

branchId Identifies an intermediate branch software revision. The branch value is represented
as a hex number between 0x00000000 and 0xFFFFFFFF. Each digit represents an
instance of a branch (0x1 to 0xF). A single digit represents a single branch from a
specific version, two digits represent a branch of a branch, three digits represent a
branch of a branch of a branch, etc.

See Also MEIControlInfoMPI

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/DataType/inffmwr2.htm [7/22/2004 3:14:25 PM]

MEIControlInfoHardware

MEIControlInfoHardware

Declaration
typedef struct MEIControlInfoHardware {
 char modelNumber[MEIControlSTRING_MAX];

 char serialNumber[MEIControlSTRING_MAX];
 char type[MEIControlSTRING_MAX];
} MEIControlInfoHardware;

Required Header stdmei.h

Description ControlInfoHardware is a structure that contains the version information of the
connected hardware.

modelNumber The Controller's model number or t-level number (ex: T001-0001) which is stored

on the hardware.

seriallNumber The Controller's serial number, which is unique to each controller.

type The type of Controller (XMP or ZMP).

See Also

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/DataType/infhrd2.htm [7/22/2004 3:14:25 PM]

MEIControlInfoMpi

MEIControlInfoMpi

Declaration
typedef struct MEIControlInfoMpi {
 char version[MEIControlSTRING_MAX];

 long fwVersion;
 long fwOption;
} MEIControlInfoMpi;

Required Header stdmei.h

Description ControlInfoMpi is a structure that contains read-only version information for the
MPI.

version A string representing the version of the MPI. The version of the MPI is broken
down by date, branch, and revision (MPIVersion.branch.revision). For ex:
20021220.1.2 means MPI version 20021220, branch 1, revision 2.

fwVersion The firmware version information that the current version of the MPI will work
with. A new field has been added to the XMP's firmware to identify and
differentiate between intermediate branch software revisions. The branch value is
represented as a hex number between 0x00000000 and 0xFFFFFFFF. Each digit
represents an instance of a branch (0x1 to 0xF). A single digit represents a single
branch from a specific version, two digits represent a branch of a branch, three
digits represent a branch of a branch of a branch, etc.

fwOption The firmware option number. Special or custom firmware is given a unique option
number. An MPI library that requires optional firmware will have a value that must
match the firmware's option number.

See Also MEIControlInfoFirmware | MEIControlInfo

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/DataType/infmpi2.htm [7/22/2004 3:14:24 PM]

MEIControlInfoPld

MEIControlInfoPld

Declaration
typedef struct MEIControlInfoPld {
 char version[MEIControlSTRING_MAX];

 char option[MEIControlSTRING_MAX];
} MEIControlInfoPld;

Required Header stdmei.h

Description ControlInfoPld is a read-only structure that contains PLD version information. The
PLD is a hardware component that contains logic to handle the controller's internal
operation.

version This is an 8-bit value in the hardware. The version string for the PLD. The PLD

image is downloaded to the controller during manufacturing.

option This is a 16-bit value (actually 2 8 bit values) in the hardware. The build option
string for the PLD. The PLD option number is a coded value that describes the PLD
image build type and target component. For XMP controllers, the option field has
bits defining various features on the PCB - for example, the presence of the CAN
interface, or the type of FPGA on the PCB.

See Also MEIControlInfo

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/DataType/infpld2.htm [7/22/2004 3:14:25 PM]

MEIControlInfoRincon

MEIControlInfoRincon

Declaration
typedef struct MEIControlInfoRincon {
 char version[MEIControlSTRING_MAX];

 char package[MEIControlSTRING_MAX];
} MEIControlInfoRincon;

Required Header stdmei.h

Description ControlInfoRincon is a structure that contains read-only version information for the
controller's Rincon image. The Rincon image contains the logic to operate a
controller's SynqNet interface.

version This is a 16-bit value in the hardware. The version string for the Rincon image on

the controller.

package This is a 16-bit value in the hardware. The package string identification for the
Rincon. The package string is a coded value that describes the Rincon image build
type and target component.

Existing types are:
9201 - Rincon for XMP, XC2S100, PQ208 package
9601 - Rincon for XMP, XC2S100, FG256 package
A102 - RinconZ for ZMP, XC2S300E, FT256 package
A301 - RinconZ for ZMP, XC3S200, FT256 package

The package and version data can be used to create the FPGA filename. For
example, 221_9201.fpg is Rincon type 9201, version 221.

See Also MEIControlInfo

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/DataType/infrincon2.htm [7/22/2004 3:14:25 PM]

MEIControlInput

MEIControlInput

MEIControlInput

 typedef enum {
 MEIControlInputUSER_0 = MEIXmpControlIOMaskUSER0_IN,
 MEIControlInputUSER_1 = MEIXmpControlIOMaskUSER1_IN,
 MEIControlInputUSER_2 = MEIXmpControlIOMaskUSER2_IN,
 MEIControlInputUSER_3 = MEIXmpControlIOMaskUSER3_IN,
 MEIControlInputUSER_4 = MEIXmpControlIOMaskUSER4_IN,
 MEIControlInputUSER_5 = MEIXmpControlIOMaskUSER5_IN,
 MEIControlInputXESTOP = MEIXmpControlIOMaskXESTOP,
} MEIControlInput;

Description ControlInput is an enumeration of a controller's local digital input bit masks. Each
mask represents a discrete input.

See Also mpiControlIoGet | mpiControlIoSet | MEIControlOutput

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/DataType/ipt2.htm [7/22/2004 3:14:19 PM]

MPIControlIo

MPIControlIo

MPIControlIo

 typedef struct MPIControlIo {
 unsigned long input[MPIControlIoWords];
 unsigned long output[MPIControlIoWords]
} MPIControlIo;

Description The ControlIo structure contains controller's local digital input and output states. The
digital inputs can be read and the digital outputs can be read or written through this
structure.

input An array of digital input values. Each bit mask is defined by the MEIControlInput

enumeration.

output An array of digital output values. Each bit mask is defined by the

MEIControlOutput enumeration.

See Also MEIControlOutput | MEIControlInput | mpiControlIoGet | mpiControlIoSet

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/DataType/io1.htm [7/22/2004 3:14:18 PM]

MEIControlIoBit

MEIControlIoBit

Declaration
typedef enum {

 MEIControlIoBitUSER_0_IN,
 MEIControlIoBitUSER_1_IN,
 MEIControlIoBitUSER_2_IN,
 MEIControlIoBitUSER_3_IN,
 MEIControlIoBitUSER_4_IN,
 MEIControlIoBitUSER_5_IN,
 MEIControlIoBitUSER_0_OUT,
 MEIControlIoBitUSER_1_OUT,
 MEIControlIoBitUSER_2_OUT,
 MEIControlIoBitUSER_3_OUT,
 MEIControlIoBitUSER_4_OUT,
 MEIControlIoBitUSER_5_OUT,

} MEIControlIoBit;

Required Header stdmpi.h

Description ControlIoBit is an enumeration of a controller's local digital I/O bit numbers.

 MEIControlIoBitUSER_0_IN controller's local input, bit number 0

 MEIControlIoBitUSER_1_IN controller's local input, bit number 1

 MEIControlIoBitUSER_2_IN controller's local input, bit number 2

 MEIControlIoBitUSER_3_IN controller's local input, bit number 3

 MEIControlIoBitUSER_4_IN controller's local input, bit number 4

 MEIControlIoBitUSER_5_IN controller's local input, bit number 5

 MEIControlIoBitUSER_0_OUT controller's local output, bit number 0

 MEIControlIoBitUSER_1_OUT controller's local output, bit number 1

 MEIControlIoBitUSER_2_OUT controller's local output, bit number 2

 MEIControlIoBitUSER_3_OUT controller's local output, bit number 3

 MEIControlIoBitUSER_4_OUT controller's local output, bit number 4

 MEIControlIoBitUSER_5_OUT controller's local output, bit number 5

Return Values

MPIMessageOK
if ControlIoGet successfully gets the I/O bits from controller and puts
(writes) them in the structure.

MPIMessageARG_INVALID if the io pointer points to NULL.

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/DataType/iobit2.htm (1 of 2) [7/22/2004 3:14:20 PM]

MEIControlIoBit

See Also meiControlIoBitGet | meiControlIoBitSet

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/DataType/iobit2.htm (2 of 2) [7/22/2004 3:14:20 PM]

MPIControlIoWords

MPIControlIoWords

MPIControlIoWords

 #define MPIControlIoWords (1)

Description ControlIoWords defines the number of 32 bit Input and Output words on the
controller.

See Also MPIControlIo | MEIControlIoBit | MEIControlInput | MEIControlOutput

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/DataType/iowrd1.htm [7/22/2004 3:14:26 PM]

MPIControlMemoryType

MPIControlMemoryType

MPIControlMemoryType
 typedef enum {

 MPIControlMemoryTypeUSER,
 MPIControlMemoryTypeDEFAULT = MPIControlMemoryTypeUSER
} MPIControlMemoryType;

Description ControlMemoryType is an enumeration of controller memory types. The controller
memory contains static and dynamic regions. The controller firmware defines the
regions and the MPI configures the dynamic memory.

MPIControlMemoryTypeUSER The dynamic portion of the controller's external

memory that is not in use by the controller.

MPIControlMemoryTypeDEFAULT Defined as MPIControlMemoryTypeUSER.

See Also
mpiControlMemoryAlloc | mpiControlMemoryCount | mpiControlMemoryFree |
mpiControlConfigGet | mpiControlConfigSet

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/DataType/memty1.htm [7/22/2004 3:14:22 PM]

MPIControlMessage and MEIControlMessage

MPIControlMessage / MEIControlMessage

MPIControlMessage

 typedef enum {
 MPIControlMessageLIBRARY_VERSION,
 MPIControlMessageADDRESS_INVALID,
 MPIControlMessageCONTROL_INVALID,
 MPIControlMessageCONTROL_NUMBER_INVALID,
 MPIControlMessageTYPE_INVALID,
 MPIControlMessageINTERRUPTS_DISABLED,
 MPIControlMessageEXTERNAL_MEMORY_OVERFLOW,
 MPIControlMessageADC_COUNT_INVALID,
 MPIControlMessageAXIS_COUNT_INVALID,
 MPIControlMessageAXIS_FRAME_COUNT_INVALID,
 MPIControlMessageCAPTURE_COUNT_INVALID,
 MPIControlMessageCOMPARE_COUNT_INVALID,
 MPIControlMessageCMDDAC_COUNT_INVALID,
 MPIControlMessageAUXDAC_COUNT_INVALID,
 MPIControlMessageFILTER_COUNT_INVALID,
 MPIControlMessageMOTION_COUNT_INVALID,
 MPIControlMessageMOTOR_COUNT_INVALID,
 MPIControlMessageSAMPLE_RATE_TO_LOW,
 MPIControlMessageRECORDER_COUNT_INVALID,
 MPIControlMessageCOMPENSATOR_COUNT_INVALID,
 MPIControlMessageAXIS_RUNNING,
 MPIControlMessageRECORDER_RUNNING,
} MPIControlMessage;

Description
MPIControlMessageLIBRARY_VERSION

The MPI Library does not match the application. This message code is returned by mpiControlInit(…)
if the MPI's library (DLL) version does not match the MPI header files that were compiled with the
application. To correct this problem, the application must be recompiled using the same MPI software
installation version that the application uses at run-time.

MPIControlMessageADDRESS_INVALID

The controller address is not valid. This message code is returned by mpiControlInit(…) if the
controller address is not within a valid memory range. mpiControlInit(…) only requires memory
addresses for certain operating systems. To correct this problem, verify the controller memory address.

MPIControlMessageCONTROL_INVALID

 Currently not supported.

MPIControlMessageCONTROL_NUMBER_INVALID

The controller number is out of range. This message code is returned by mpiControlInit(…) if the
controller number is less than zero or greater than or equal to MaxBoards(8).

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/DataType/mes3.htm (1 of 5) [7/27/2004 11:38:34 AM]

MPIControlMessage and MEIControlMessage

MPIControlMessageTYPE_INVALID

The controller type is not valid. This message code is returned by mpiControlInit(…) if the controller
type is not a member of the MPIControlType enumeration.

MPIControlMessageINTERRUPTS_DISABLED

The controller interrupt is disabled. This message code is returned by mpiControlInterruptWait(…) if
the controller's interrupt is not enabled. This prevents an application from waiting for an interrupt that
will never be generated. To correct this problem, enable controller interrupts with
mpiControlInterruptEnable(…) before waiting for an interrupt.

MPIControlMessageEXTERNAL_MEMORY_OVERFLOW

The controller's external memory will overflow. This message code is returned by
mpiControlConfigSet(…) if the dynamic memory allocation exceeds the external memory available on
the controller. To correct the problem, reduce the number/size of control configuration resources or use
a controller model with a larger static memory component.

MPIControlMessageADC_COUNT_INVALID

The ADC count is not valid. This message code is returned by mpiControlConfigSet(…) if the number
of ADCs is greater than MEIXmpMAX_ADCs.

MPIControlMessageAXIS_COUNT_INVALID

The axis count is not valid. This message code is returned by mpiControlConfigSet(…) if the number of
axes is greater than MEIXmpMAX_Axes.

MPIControlMessageAXIS_FRAME_COUNT_INVALID

This message is returned from mpiControlConfigSet(...) if the value for
MPIControlConfig.axisFrameCount is not a power of two or if axisFrameCount is less than
MPIControlMIN_AXIS_FRAME_COUNT.

MPIControlMessageCAPTURE_COUNT_INVALID

The capture count is not valid. This message code is returned by mpiControlConfigSet(…) if the
number of captures is greater than MEIXmpMAX_Captures.

MPIControlMessageCOMPARE_COUNT_INVALID

The compare count is not valid. This message code is returned by mpiControlConfigSet(…) if the
number of compares is greater than MEIXmpMAX_Compares.

MPIControlMessageCMDDAC_COUNT_INVALID

The command DAC count is not valid. This message code is returned by mpiControlConfigSet(…) if
the number of command DACs is greater than MEIXmpMAX_DACs.

MPIControlMessageAUXDAC_COUNT_INVALID

The auxiliary DAC count is not valid. This message code is returned by mpiControlConfigSet(…) if the
number of auxiliary DACs is greater than MEIXmpMAX_DACs.

MPIControlMessageFILTER_COUNT_INVALID

The filter count is not valid. This message code is returned by mpiControlConfigSet(…) if the number
of filters is greater than MEIXmpMAX_Filters.

MPIControlMessageMOTION_COUNT_INVALID

The motion count is not valid. This message code is returned by mpiControlConfigSet(…) if the
number of motions is greater than MEIXmpMAX_MSs.

MPIControlMessageMOTOR_COUNT_INVALID

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/DataType/mes3.htm (2 of 5) [7/27/2004 11:38:34 AM]

MPIControlMessage and MEIControlMessage

The motor count is not valid. This message code is returned by mpiControlConfigSet(…) if the number
of motors is greater than MEIXmpMAX_Motors.

MPIControlMessageSAMPLE_RATE_TO_LOW

The controller sample rate is too small. This message code is returned by mpiControlConfigSet(…) if
the sample rate is less than 1000. SynqNet does not support cyclic data rates below 1kHz. The
controller's sample rate specifies the SynqNet cyclic rate.

MPIControlMessageRECORDER_COUNT_INVALID

The recorder count is not valid. This message code is returned by mpiControlConfigSet(…) if the
number of recorders is greater than MEIXmpMAX_Recorders.

MPIControlMessageCOMPENSATOR_COUNT_INVALID

The compensator count is not valid. This message code is returned by mpiControlConfigSet(…) if the
number of compensators is greater than MPIControlMAX_COMPENSATORS.

MPIControlMessageAXIS_RUNNING

Attempting to configure the control object while axes are running. It is recommended that all
configuration of the control object occur prior to commanding motion.

MPIControlMessageRECORDER_RUNNING

Attempting to configure the control object while a recorder is running. It is recommended that all
configuration of the control object occur prior to operation of any recorder objects.

MEIControlMessage
 typedef enum {

 MEIControlMessageFIRMWARE_INVALID,
 MEIControlMessageFIRMWARE_VERSION_NONE,
 MEIControlMessageFIRMWARE_VERSION,
 MEIControlMessageFPGA_SOCKETS,
 MEIControlMessageBAD_FPGA_SOCKET_DATA,
 MEIControlMessageNO_FPGA_SOCKET,
 MEIControlMessageINVALID_BLOCK_COUNT,
 MEIControlMessageSYNQNET_OBJECTS,
 MEIControlMessageSYNQNET_STATE,
 MEIControlMessageIO_BIT_INVALID,
} MEIControlMessage;

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/DataType/mes3.htm (3 of 5) [7/27/2004 11:38:34 AM]

MPIControlMessage and MEIControlMessage

Description
MEIControlMessageFIRMWARE_INVALID

The controller firmware is not valid. This message code is returned by mpiControlInit(…) if the MPI
library does not recognize the controller signature. After power-up or reset, the controller loads the
firmware from flash memory. When the firmware executes, it writes a signature value into external
memory. If mpiControlInit(…) does not recognize the signature, then the firmware did not execute
properly. To correct this problem, download firmware and verify the controller hardware is working
properly.

MEIControlMessageFIRMWARE_VERSION_NONE

The controller firmware version is zero. This message code is returned by control methods do not find a
firmware version. This indicates the firmware did not execute at controller power-up or reset. To correct
this problem, download firmware and verify the controller hardware is working properly.

MEIControlMessageFIRMWARE_VERSION

The controller firmware version does not match the software version. This message code is returned by
control methods if the firmware version is not compatible with the MPI library. To correct this problem,
either download compatible firmware or install a compatible MPI run-tim library.

MEIControlMessageFPGA_SOCKETS

The maximum number of FPGA socket types has been exceeded. This message code is returned by
meiFlashMemoryFromFile(…) if the controller has more FPGA types than the controller has flash
memory space to support them.

MEIControlMessageBAD_FPGA_SOCKET_DATA

 Not supported.

MEIControlMessageNO_FPGA_SOCKET

The FPGA socket type does not exist. This message code is returned by meiFlashMemoryFromFile(…)
if the controller does not support the FPGA type that was specified in the FPGA image file. To correct
this problem, use a different FPGA image that is compatible with the controller.

MEIControlMessageINVALID_BLOCK_COUNT

 Not supported.

MEIControlMessageSYNQNET_OBJECTS

 Not supported.

MEIControlMessageSYNQNET_STATE

The controller's SynqNet state is not expected. This message code is returned by mpiControlInit(…),
mpiControlReset(…) and mpiControlConfigSet(…) if the SynqNet network initialization fails to reach
the SYNQ state. To correct this problem, check your node hardware and network connections.

MEIControlMessageIO_BIT_INVALID

The controller I/O bit is not valid. This message code is returned by meiControlIoBitGet(...) or
meiControlIoBitSet(…) if the controller I/O bit is not a member of the MEIControlIoBit enumeration.

See Also

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/DataType/mes3.htm (4 of 5) [7/27/2004 11:38:34 AM]

file:///D|/pdfs/030100/html/Software-MPI/docs/Flash/Method/memfmfil2.htm
file:///D|/pdfs/030100/html/Software-MPI/docs/Flash/Method/memfmfil2.htm

MEIControlOutput

MEIControlOutput

MEIControlOutput

 typedef enum {
 MEIControlOutputUSER_0 = MEIXmpControlIOMaskUSER0_OUT,
 MEIControlOutputUSER_1 = MEIXmpControlIOMaskUSER1_OUT,
 MEIControlOutputUSER_2 = MEIXmpControlIOMaskUSER2_OUT,
 MEIControlOutputUSER_3 = MEIXmpControlIOMaskUSER3_OUT,
 MEIControlOutputUSER_4 = MEIXmpControlIOMaskUSER4_OUT,
 MEIControlOutputUSER_5 = MEIXmpControlIOMaskUSER5_OUT,
} MEIControlOutput;

Description ControlOutput is an enumeration of a controller's local digital output bit masks. Each
mask represents a discrete output.

See Also mpiControlIoGet | mpiControlIoSet | MEIControlInput

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/DataType/opt2.htm [7/22/2004 3:14:19 PM]

MEIControlTrace

MEIControlTrace

MEIControlTrace
 typedef enum {

 MEIControlTraceDYNA_ALLOC = MEIControlTraceFIRST << 0,
} MEIControlTrace;

Description ControlTrace is an enumeration of control object trace bits to enable debug tracing.

MEIControlTraceDYNA_ALLOC This trace bit enables tracing for calls that dynamically

allocate controller memory.

See Also

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/DataType/trc2.htm [7/22/2004 3:14:27 PM]

MPIControlType

MPIControlType

MPIControlType

 typedef enum {
 MPIControlTypeDEFAULT,
 MPIControlTypeMAPPED,
 MPIControlTypeIOPORT,
 MPIControlTypeDEVICE,
 MPIControlTypeCLIENT,
 MPIControlTypeFILE,
} MPIControlType;

Description ControlType is an enumeration that specifies the type of controller that needs to be
accessed when mpiControlCreate() is called. Please refer to the documentation for
mpiControlCreate() to see how to use this enumeration.

See Also MPIControl | mpiControlCreate | mpiControlType

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/DataType/ty1.htm [7/22/2004 3:14:11 PM]

MPIControlMAX_AXES

MPIControlMAX_AXES

Declaration #define MPIControlMAX_AXES (32)

Required Header stdmpi.h

Description Defines the maximum number of axes available on one controller.

See Also MPIAxis | mpiControlConfigGet | mpiControlConfigSet

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/DataType/maxax4.htm [7/22/2004 3:14:27 PM]

file:///D|/pdfs/030100/html/Software-MPI/docs/Axis/ax_out.htm

MPIControlMAX_COMPENSATORS

MPIControlMAX_COMPENSATORS

Declaration #define MPIControlMAX_COMPENSATORS (4)

Required Header stdmpi.h

Description Defines the maximum number of compensator objects available on one controller.

See Also MPICompensator | mpiControlConfigGet | mpiControlConfigSet

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/DataType/maxcomp4.htm [7/22/2004 3:14:27 PM]

file:///D|/pdfs/030100/html/Software-MPI/docs/Compensator/comp_out.htm

MPIControlMAX_RECORDERS

MPIControlMAX_RECORDERS

Declaration #define MPIControlMAX_RECORDERS (32)

Required Header stdmpi.h

Description Defines the maximum number of recorder objects available on one controller.

See Also

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/DataType/maxrec4.htm [7/22/2004 3:14:24 PM]

MPIControlMIN_AXIS_FRAME_COUNT

MPIControlMIN_AXIS_FRAME_COUNT

Declaration #define MPIControlMIN_AXIS_FRAME_COUNT (128)

Required Header stdmpi.h

Description Defines the the minimum allowed value for which
MPIControlConfig.axisFrameCount can be set.

See Also MPIControlConfig | mpiControlConfigGet | mpiControlConfigSet

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/DataType/minaxfracnt4.htm [7/22/2004 3:14:28 PM]

MEIControlSTRING_MAX

MEIControlSTRING_MAX

Declaration #define MEIControlSTRING_MAX (16)

Required Header stdmei.h

Description Defines the maximum number of characters in MEIControlInfo strings.

See Also MEIControlInfo | MEIControlInfoHardware

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/DataType/stringmax5.htm [7/22/2004 3:14:26 PM]

Dynamic Allocation of External Memory Buffers

Dynamic Allocation of External Memory Buffers

In previous versions, the XMP external memory was statically allocated at firmware compile time.

In version 20010119 and later, specific buffers of the XMP external memory are dynamically allocated. The
dynamic allocation feature allows an application to efficiently use the XMP controller's on-board memory and
allows for future expansion. The dynamically allocated buffers currently include the Frame Buffer and Record
Buffer. Each of these buffers sizes are recalculated during a call to mpiControlConfigSet(...) if there is a
change in any of the associated ControlConfig values.

The Frame Buffer is used for motion on each axis. The Frame Buffer is directly associated with the number
of EnabledAxes in the MPIControlConfig structure. The Frame Buffer will be allocated to the minimum size
required to support the number of enabled axes. The default number of EnabledAxes is eight (8).

The Record Buffer is used for the on-board data recorder. The Record Buffer is directly associated with the
number of EnabledRecord in the MPIControlConfig structure. The Record Buffer will be allocated to the
minimum size required to support the number of enabled records. The default number of EnabledRecords is
3064. Each record is the size of one memory word.

The meiControlExtMemAvail(...) method has been added to discover how much memory is available on your
controller.

MPI_DEF1 long MPI_DEF2
 meiControlExtMemAvail(MPIControl control,
 long *size)

The meiControlExtMemAvail(...) method will return the number of memory words available. Since each
record size is one memory word, the size returned from the above function can be used to increase the Record
Buffer to maximum size possible. This greatly improves client/server operation of Motion Scope and any
application used for data collection.

WARNING! Due to the nature of dynamic allocation and the clearing of external memory buffers
mpiControlConfigSet(...) should ONLY be called at motion application initialization time and NOT during
motion.

Return to Control Objects page

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Topics/ext_mem_bffrs.htm [7/22/2004 3:14:15 PM]

TCP/IP and Sockets for Control Objects

TCP/IP and Sockets for Control Objects

The MPI implements network functionality as client/server. The xmp\util\server.c program implements a
basic server. You just create a Control object of type MPIControlTypeCLIENT and specify the server's host in
the MPIControlAddress{}.client{} structure.

You can try “MPI networking” on a single machine by starting up the server program in a DOS window, and
then running a sample application in another DOS window. Note that you can specify the host name and port
of the server as command line arguments to all sample applications and utilities.

The way the MPI client/server works internally is that low-level mpiControlMemory and mpiControlInterrupt
methods are intercepted just before they read/write XMP memory. The methods are packaged up as remote
procedure calls and sent to the server for execution. The server sends the results back to the client.

There are 2 channels of communication - one channel to wait for interrupts, and another channel to do
everything else. All MPI methods that communicate with the XMP do so by calling (eventually) the low level
mpiControlMemory methods, so no application code needs to be changed other than the initial call to
mpiControlCreate(...). This is all implemented on WinNT using WinSock.

Note that it would be possible to implement the client/server scenario above using an RS-232 line rather than
TCP/IP WinSock. The MPI’s client/server protocol only requires a reliable transport mechanism (WinSock,
RS-232) between a client and server.

Return to Control Objects page

file:///D|/pdfs/030100/html/Software-MPI/docs/Control/Topics/tcp_ip_sock.htm [7/22/2004 3:14:11 PM]

	Control Objects
	Methods
	mpiControlCreate
	mpiControlDelete
	mpiControlValidate
	mpiControlAddress
	mpiControlConfigGet
	mpiControlConfigSet
	meiControlExtMemAvail
	mpiControlFlashConfigGet
	mpiControlFlashConfigSet
	meiControlFPGADefaultGet
	meiControlFPGADefaultOverride
	meiControlGateGet
	meiControlGateSet
	meiControlInfo
	mpiControlIoGet
	mpiControlIoSet
	meiControlIoBitGet
	meiControlIoBitSet
	meiControlSampleCounter
	meiControlSamplestoSeconds
	meiControlSampleWait
	meiControlSecondstoSamples
	mpiControlType
	mpiControlMemory
	mpiControlMemoryAlloc
	mpiControlMemoryCount
	mpiControlMemoryFree
	mpiControlMemoryGet
	mpiControlMemorySet
	meiControlPlatform
	meiControlCycleWait
	mpiControlInit
	mpiControlInterruptEnable
	mpiControlInterruptWait
	mpiControlInterruptWake
	mpiControlReset
	meiControlVersionMismatchOveride

	Data Types
	MPIControlAddress
	MPIControlConfig and MEIControlConfig
	MEIControlInfo
	MEIControlInfoDriver
	MEIControlInfoFirmware
	MEIControlInfoHardware
	MEIControlInfoMpi
	MEIControlInfoPld
	MEIControlInfoRincon
	MEIControlInput
	MPIControlIo
	MEIControlIoBit
	MPIControlIoWords
	MPIControlMemoryType
	MPIControlMessage and MEIControlMessage
	MEIControlOutput
	MEIControlTrace
	MPIControlType

	Contstants
	MPIControlMAX_AXES
	MPIControlMAX_COMPENSATORS
	MPIControlMAX_RECORDERS
	MPIControlMIN_AXIS_FRAME_COUNT
	MEIControlSTRING_MAX

	Topics
	Dynamic Allocation of External Memory Buffers
	TCP/IP and Sockets for Control Objects

