
C-programmable motion control

Unmatched programmability, speed, & precision.
Unequaled value.

XMP
SERIES
PRODUCT OVERVIEW

MEI’s XMP Series motion controllers

offer a level of programmability,

speed, and precision unmatched by

any other PC-based controller. With its
software-defined capabilities, the

XMP can be readily customized to fit

the requirements of the most de-

manding OEM applications.

The XMP’s object-oriented API, the Motion Programming Inter-
face (MPI), lets you create complex, multi-threaded applications

in C or C++. Commands and data pass from host to XMP across

a high-speed PCI bus via a 32-bit direct memory interface.

A 32-bit floating-point DSP provides the XMP with the process-

ing bandwidth to control up to 16 axes. This 150 MFLOPS DSP
also delivers servo update rates of as high as 10 kHz for 8 axes

(5 kHz for 16 axes).

XMP options extend performance even further. These include

on-board sinusoidal commutation for up to 16 axes and scale

interpolation for submicron position accuracy.

C/C++ programmable

Object-oriented API, Motion
Programming Interface

32-bit floating point DSP

Servo update rates: 10 kHz for 8
axes (5 kHz for 16 axes)

Up to 16 axes of servos or steppers

Support for Windows NT, Windows
95/98, VenturCom, and other
real-time operating systems

Optional on-board sinusoidal
commutation for up to 16 axes

Optional scale interpolation
(up to 1,024x)

XMP-CPCI XMP-PCI

XMP
SERIES
MOTION
CONTROLLERS

Object-oriented programming

The XMP is programmed using the MPI

(Motion Programming Interface), an

object-oriented, C/C++ programming

interface. You access all XMP re-

sources—hardware and firmware—

through the MPI.

The MPI’s object-oriented architecture

lets you build your motion code the

same way you build your machine: by

creating individual software objects

that reflect the components and actions

of the hardware.

An MPI application creates objects for

the motion controller and its resources

(such as axes, input and output devices,

or firmware tasks) and manipulates

them using various methods.

The MPI is written entirely in ANSI-

compatible C code for maximum

portability. With rules and methodology

consistent with other object-oriented

interfaces, the MPI simplifies integration

of motion code with other software

components in your machine.

DEVELOPMENT SOFTWARE

MPI objects

Objects in the MPI include:

Control—manages a motion controller

device and handles all communication

with the firmware

Axis—is associated with a single

physical axis on a motion controller.

When required, an Axis object can

control multiple motors that perform as

a single axis, such as a gantry system.

Motor—is associated with a physical

motor. Motor objects handle the

amplifier, I/O bits, and events associated

with the motor.

Motion—maintains an ordered list of

Axis objects that specify the coordinate

system for all motions to be performed.

Motions are defined by type (trapezoi-

dal, S-curve, parabolic, etc.) and

parameters (position, velocity, accelera-

tion, etc.).

Control

System
Data

Motion SequenceEventMgr

Motion
Supervisor

Program
Sequencer

Host
Message

MPI
(host-based
objects)

XMP
(firmware
resources)

Recorder

Data
Recorder

Axis

Axis

Motor

Motor

Filter

Filter

...

...

Each Motion Programming Interface (MPI) object has a corresponding firmware resource

Position—manages the firmware

resource that calculates control

algorithm for an axis.

EventMgr (Event Manager)—receives

asynchronous events (such as an end-of-

move or a position compare) from the

firmware. In response, an Event object

is generated by the firmware and sent

to any threads waiting for those events.

Sequence—is a linked list of motion

commands executed directly on the

firmware.

Recorder—collects motion information

from the firmware to be accessed by

external tools such as Motion Scope,

Motion Console, or other graphing/

analysis packages.

AxisActualPositionGet()
AxisActualPositionSet()
AxisConfigGet()
AxisConfigSet()
AxisControl()
AxisFlashConfigGet()
AxisFlashconfigSet()
AxisMemoryGet()
AxisMemorySet()
AxisNumber()
AxisStatus()

Selected Axis object methods

PROGRAMMING THE XMP

The Event Manager receives
events from firmware and
in response notifies threads
to wake up

XMP firmware receives
commands, executes
commands autonomous-
ly, and notifies the Event
Manager of events

The Data Recorder collects
real-time data from the
XMP’s Recorder buffer

Direct Memory Interface

XMP

Recorder
Buffer

Data and interrupts travel
across the PCI bus through
a direct memory interface

MPI application threads
can correspond to sub-
systems in your machine

Events

Motion
Data

MPI application
(Host)

THREAD 1

• create axis
object 1 (x)

• create axis
object 2 (y)

• create motion
object

• move to
docking nest

• sleep until user-
defined event

Material Handling
System

THREAD 2

• create axis
object 1 (x)

• create axis
object 2 (y)

• create axis
object 3 (z)

• move to
position (x, y, z)

• sleep until at
position

Robot #1

Part Loader

Thread sleeps
until Event
Manager notifies
it to wake up

THREAD 3

THREAD 1

Motion Scope

Connects to Data
Recorder over
bus or TCP/IP

Graphs data from
one or more axes,
including:

• position

• error

• velocity

• status

• DAC output

Commands
& Data

Data
Recorder

DSP The DSP handles real-
time functions for
deterministic performance

Commands & Data

Performance
Monitor (Host)

MPI applications can
execute on the host,
the XMP, or both

Event
Manager

Event Buffer

Sample MPI application in a multitasking environment

Debugging tools

The MPI’s trace feature displays a

stream of messages to let you view an

application’s progress as it executes.

Trace switches can be turned on to

display:

• when a library function is entered

or exited

• when host memory is allocated

or freed

• when XMP memory is read

or written

• when an object is validated

• when a resource lock is released

or obtained

• and many other conditions

Once development is complete, you

can run the application with the trace

feature turned off if desired.

In addition to the trace feature, the MPI

provides runtime error checking to

validate that applications are running

correctly. For example, this feature

checks whether bad data is passed to

a function, pointers are correct, and

parameters are valid.

When runtime checking finds an error,

it can stop the application and display

the source file name and line number

where the error occurred.

Real-time motion control

The host CPU communicates with the

XMP controller via direct memory reads

and writes over a 32-bit PCI or Com-

pactPCI bus.

Depending on application require-

ments, MPI programs can execute on

the host, on the XMP, or be divided

between both. For example, tasks that

require deterministic control can be

completely off-loaded to the XMP while

less time-critical tasks can remain with

the host.

When tasks execute on the XMP, the

host downloads commands into a

buffer managed by one or more

Program Sequencers. Program Sequenc-

ers monitor how many commands

remain in the buffer and trigger the

host to download more commands

when needed. This allows command

sequences to be of any length.

Operating system support

The MPI was designed for multi-

threaded environments and supports

Windows NT, Windows 95/98,

VenturCom real-time extensions, and

other real-time operating systems. The

reentrant library includes operating

system locking mechanisms to control

access to shared resources.

TCP/IP remote connections

For remote motion control and diagnos-

tics, the MPI supports a socket-based

client-server mode of operation running

over TCP/IP.

Host with
Motion
Server

Remote Host
running
Motion
Console

TCP/IP
Link

XMP

TCP/IP connections

Sample MPI motion routine

/* Create axis object using AXIS on controller */
axis = mpiAxisCreate(control, AXIS);
meiASSERT(mpiAxisValidate(axis) == MPIMessageOK);

/* Create motion supervisor object using MS number 0 */
motion = mpiMotionCreate(control, 0, MPIHandleVOID);
meiASSERT(mpiMotionValidate(motion) == MPIMessageOK);

/* Set up motion parameters */
params.trapezoidal.trajectory.velocity = 100000.0;
params.trapezoidal.trajectory.acceleration = 1000000.0;
params.trapezoidal.trajectory.deceleration = 1000000.0;
endPosition = 200000.0;
params.trapezoidal.trajectory.position = &endPosition;

/* Enable the amplifier */
returnValue = mpiMotorAmpEnableSet(motor, TRUE);
meiASSERT(returnValue == MPIMessageOK);

/* Start motion */
returnValue = mpiMotionStart(motion,
MPIMotionTypeTRAPEZOIDAL, ¶ms);

Motion Console and Motion Scope can access
a local or remote XMP

Motion Console

You set up, tune, and configure XMP

controllers using Motion Console. With

this Windows-based program, you can

verify system wiring and spin motors

with just a few mouse clicks.

Motion Console capabilities include

installing and configuring multiple

controllers, modifying tuning param-

eters, tuning the system, checking axis

status and more.

Motion Console includes an oscillo-

scope graphing function to chart

position, voltage, velocity, and error.

You can graph motion in real time

while tuning an axis or plot sampled

data from a previous motion sequence.

For remote configuration and tuning,

Motion Console can communicate with

an XMP system over a TCP/IP link.

Motion Scope

You monitor the real-time performance

of your MPI motion applications using

Motion Scope, a powerful debugging

tool for retrieving and graphing motion

and I/O data. Motion Scope combines

the capabilities of an oscilloscope with

a logic analyzer, accessing data from the

XMP in real time.

Motion Scope can display in continu-

ous, sampled, and triggered modes. You

can simultaneously view multiple

graphs to compare data of different

types or from different sources. Each

graph can be independently scaled and

configured with different display

options. You can save graphs for future

reference and output ASCII data for

import into other analysis tools.

Like Motion Console, Motion Scope can

access data from a remote XMP system

via a TCP/IP communication link.

Recorder

The Recorder, an object in the MPI,

collects performance and position data

from the XMP, including command and

actual position, error, command and

actual velocity, status, and DAC output.

XMP system data collected by the

Recorder can be displayed using

Motion Console, Motion Scope, or other

graphic/analysis tools.

DEVELOPMENT UTILITIES

Motion Console configuration window (Japanese version)

Motion Console graphing window

Motion Scope analysis with four panes

PID and PIV control algorithms

The XMP can provide either PID or PIV

(velocity feedback) control algorithm

for each axis. Both use velocity, accel-

eration, and friction feedforward.

With PID compensation, the single-loop

system uses only position feedback. A

PID compensator filters the position

error signal. The derivative term of the

PID compensation provides system

dampening.

Under PIV compensation, an inner

velocity loop provides system dampen-

ing. A velocity estimate is derived from

position feedback. The velocity loop

also uses a PI compensator. Additional

compensation can be implemented

using biquad filter blocks if required.

With its powerful processor and

flexible architecture, the XMP can

implement and quickly execute custom

control algorithms, including state

feedback and state observers.

Filter design toolkit

Notch filter design toolkit

To improve move times and system

stability, the XMP’s easy-to-use filter

design toolkit lets you implement multi-

stage notch and low-pass filters.

The filter design toolkit provides a

graphical interface for specifying the

low-pass cutoff frequencies (or the

center frequency and width for notch

filters). The toolkit automatically

calculates digital coefficients to be

downloaded to the XMP’s cascading

biquad filter or saved to a file.

You can design different filters for each

axis. Up to six biquad stages/axis (12th

order filter) are supported.

Acmd

Vcmd

Pcmd

Ki

Kp Kpv

z - 1
z

z - 1
z

Velocity
Estimate

Kiv

Biquad DAC++

Feedback Encoder 1

Feedback Encoder 2

+ +
+

-
-

Kuff

Kaff

XMP PIV algorithm

Optional scale interpolation

For submicron position accuracy, an

optional scale interpolation module can

increase scale resolution to 1,024x.

Each scale interpolation module

supports up to four axes (with simulta-

neous sampling) and accepts feedback

in voltage or current modes. The XMP

supports up to 16 axes of interpolation.

The scale interpolation module can

interpolate data from a 10 µm encoder

to within 2.5 nm (12 bits of interpola-

tion). Direct connection to a scale

allows an equivalent quadrature count

rate of 500 MHz. The module eliminates

expensive external encoder interpola-

tors and reduces system cost and

complexity.

The scale interpolation module is ideal

for high-resolution x-y positioning

systems and improves the accuracy of

the XMP’s position capture and

compare features to submicron levels.

Motion functions

Multi-axis synchronized motion

Multi-axis coordinated motion

Optional scale interpolation

Optional sinusoidal commutation

Trapezoidal, parabolic, & S-curve profiles

Symmetric & asymmetric profiles

Velocity moves

Custom trajectories

On-the-fly trajectory modification

Velocity-generated events

Two-dimensional compensation tables

Post-PID cascading biquad filters

Low-pass and notch filter toolkit

Gantry algorithms

On-board settling

Electronic gearing

Electronic camming

Dual-loop support

Position compare

Position capture

Laser power control

Circular interpolation

Position capture

The XMP can capture the exact po-

sition of one or more axes whenever a

specified trigger condition occurs. This

feature is useful for homing, probing,

wafer centering, wafer mapping, and

coordinate measurement applications.

Triggers for position capture can be a

combination of the following inputs:

• home

• index

• positive or negative overtravel

• transceiver

Several axes can be captured simulta-

neously from one or more input

triggers.

Position capture is implemented in

hardware with latency under 2 µsec for

up to 16 axes.

Position compare

The XMP includes comparison hard-

ware to generate output signals based

on the precise position of one or more

axes. This position compare capability

can be used to trigger devices such as

imaging subsystems.

Ten compare registers for each group

of four axes can be used singly or in

combination to provide complex

outputs such as:

• output ON if x and y axes are both

inside a specified position window

• outputs ON and OFF at predefined

points during motion

• high speed repetitive output

sequence

Because output signals are hardware

based, latency is under 2 µsec for up to

16 axes.

ADVANCED CAPABILITIES

Scale interpolation module

On-the-fly trajectory modification

In the XMP, a motion trajectory can be

changed at any time and as often as

needed by updating acceleration,

velocity, and/or position (more than

one can be changed at the same time).

The DSP automatically recalculates the

trajectory in real time.

On-the-fly trajectory modification is

useful in high-speed applications that

integrate vision systems, such as

electronic assembly machines that need

to verify component orientation before

placement.

On-board settling

The XMP performs on-board settling to

more quickly and accurately determine

in-position status. To do this, the XMP

compares actual values with three

parameters (position error tolerance,

velocity error tolerance, and duration or

each). Once all three criteria are met,

the XMP generates a settled event.

By increasing machine throughput, on-

board settling can improve perfor-

mance in chip shooters and semicon-

ductor manufacturing machines.

2D compensation tables

To compensate for surface irregularities

when moving a mechanism over an x-y

stage or high-precision positioning

system, the XMP supports two-dimen-

sional compensation tables. This yields

higher accuracy in submicron position-

ing systems.

The user-supplied compensation table

is downloaded into XMP memory. The

XMP automatically applies this compen-

sation information to optimize motion

profiles in real time.

Custom accessory modules

XMP capabilities can be extended to

meet advanced, application-specific

requirements.

For volume OEM customers, custom

mezzanine modules can be developed

to customer-specific interfaces or

devices such as custom I/O, specialized

position encoders, system sensors, etc.

On-board sinusoidal commutation

To maintain smooth motor operation

and low torque ripple—especially at

low speeds—XMP controllers are

available with optional dual DACs per

axis to support on-board sinusoidal

commutation for up to 16 axes.

Using feedback from a high-resolution

encoder, the XMP precisely energizes

motor windings by generating the “A”

and “B” sinusoidal signals (the servo

amplifier derives the third signal).

The XMP sinusoidal commutation

option provides several initialization

routines, including phase step, Hall

sensor, and dithering. For optimal

performance at high velocities, the

sinusoidal commutation option also

supports phase advance.

Trigger
Original
Endpoint

Final
Endpoint

Ve
lo

ci
ty

Samples
0 100 200 300 400 500 600

100

80

60

40

20

0

On-the-fly trajectory modification lets you change trajectory at any time
and as often as needed

32-bit
Floating-Point
SHARC DSP

Data Bus

Bus
Interface

up to 16

High-speed
Serial Link

up to 48

Analog
Inputs

Flash
Memory

SRAM

Interface
Controller

Transceiver I/O
- step-and-direction
- CW/CCW
- position capture
- position compare
- general purpose

Servo Outputs

User I/O

Dedicated I/O

Encoder
Inputs

Motion Block Subsystem
(up to 4 per XMP)

up to 16

Optional Scale
Interpolation
Module

Optional DACs

up to 20

up to 16

up to 82

up to 16

up to 8

Powerful DSP core

The hardware architecture of the XMP

is centered around the 32-bit floating-

point SHARC DSP (150 MFLOPS). The

SHARC gives the XMP the power to

update 8 axes at speeds up to 10 kHz

(16 axes at up to 5 kHz).

The SHARC DSP also provides the

processing bandwidth required to

handle both motion and trajectory

calculations, freeing the host from real-

time control functions. By automatically

calculating motion algorithms in real

time, the XMP can change trajectory

on-the-fly.

Fast bus communications

The host CPU communicates with the

XMP via direct memory reads and

writes over the 32-bit PCI or Compact

PCI bus. The XMP transfers data across

the bus at PCI bus speeds.

HARDWARE FEATURES

XMP Series hardware architecture

Modular architecture

Individual axis are grouped into motion

blocks, with four axes per block. Up to

two motion blocks reside on the XMP

main board. In systems with 12 or 16

axes, additional motion blocks reside on

an expansion board, connected to the

main board via a 40 Mbit/sec serial link.

Each motion block includes five

encoder inputs as well as an interface

controller that provides high-speed

communications between the DSP and

all motion I/O functions.

Position feedback capabilities

The XMP supports position feedback

from incremental encoders (at count

rates up to 40 MHz) and analog scales.

The XMP also features eight true

differential 16-bit analog inputs that can

be used to read analog input signals or

can be configured for position feed-

back, force feedback, and jogging.

Hardware features

up to 16 axes servos and steppers

32-bit direct memory interface

16-bit servo output resolution

4 MHz digitally synthesized step
output

shielded high-density connectors

16-bit differential analog inputs

analog (joystick) jogging

up to 82 lines dedicated I/O
(opto-isolated)

Encoder integrity checking

MEI’s Encoder integrity checking

(EIC) feature monitors encoder lines

and immediately shuts down a

potential runaway condition caused

by broken or shorted encoder wires.

EIC prevents runaway conditions to

safeguard against hardware malfunc-

tions and wiring errors.

I/O capabilities

The XMP provides three types of I/O

as follows:

Dedicated—up to 82 lines, opto-

isolated. Five lines per axis: home,

positive limit, negative limit, and amp

fault inputs plus amp enable output.

Also master E-Stop and reset inputs

per controller.

Transceiver—up to 48 lines, fast EIA-

422. Used to implement stepper

outputs or for position capture inputs

and position compare outputs.

User—up to 16 lines, opto-isolated.

Watchdog timeout

The XMP’s watchdog timeout is a fail-

safe hardware feature that provides for

an orderly shutdown of motion events.

If the fault monitor circuitry detects a

firmware malfunction, the watchdog

timer can trigger a software reset or

other user-specified event.

High-density connectors

The XMP connects to external devices

through high-density, shielded connec-

tors that comply with the SCSI-4 VHDCI

standard. XMP connectors offer a low

profile that enables up to 272 I/O

connections to be brought out in a

single PCI slot. Shielded cable assem-

blies are also available from MEI; one is

required for every two axes.

You access XMP hardware capabilities through the Motion Programming Interface

Servo
Drive

XMP with
±10V outputs

SERCOS
Drive

XMP with
SERCOS outputs

PWM
Drive

XMP with
PWM outputs

Step/Servo
Drive

XMP with
Pulse outputs

PINOUTS

Pinout notes:

Pinouts shown are for axes 0-7 on XMP main board
(all models).

Full interface documentation is available in XMP
Motion Controller Hardware Reference.

Axes 0-1

Pin Signal Signal Pin
1 Analog_IN_0+ Analog_IN_0- 35
2 Analog_IN_1+ Analog_IN_1- 36
3 Gnd A_Gnd 37
4 Enc0_A+ Enc0_A- 38
5 Enc0_B+ Enc0_B- 39
6 Enc0_I+ Enc0_I- 40
7 Home0_IN 5V_OUT 41
8 Pos_Lim0_IN Gnd 42
9 Neg_Lim0_IN HomeLim0_Rtn 43
10 Cmd_Dac_OUT_0 A_Gnd 44
11 Aux_Dac_OUT_0 A_Gnd 45
12 Amp_Flt0_IN Amp_Flt0_Rtn 46
13 Amp_En0_Collector Amp_En0_Emitter 47
14 UserIO_A0 UserIO_A0_Rtn 48
15 Xcvr0A+ Xcvr0A- 49
16 Xcvr0B+ Xcvr0B- 50
17 Xcvr0C+ Xcvr0C- 51
18 Enc1_A+ Enc1_A- 52
19 Enc1_B+ Enc1_B- 53
20 Enc1_I+ Enc1_I- 54
21 Home1_IN 5V_OUT 55
22 Pos_Lim1_IN Gnd 56
23 Neg_Lim1_IN HomeLim1_Rtn 57
24 Cmd_Dac_OUT_1 A_Gnd 58
25 Aux_Dac_OUT_1 A_Gnd 59
26 Amp_Flt1_IN Amp_Flt1_Rtn 60
27 Amp_En1_Collector Amp_En1_Emitter 61
28 Gnd Gnd 62
29 Xcvr1A+ Xcvr1A- 63
30 Xcvr1B+ Xcvr1B- 64
31 Xcvr1C+ Xcvr1C- 65
32 UserIO_A1 UserIO_A1_Rtn 66
33 RESET_IN UserIO_A2 67
34 ESTOP_IN UserIO_A2_Rtn 68

PRODUCT EVOLUTION

Custom XMP models

MEI has an extensive base of motion

control technology that can be com-

bined with the XMP’s powerful

software and hardware to meet specific

customer requirements.

Other outputs

Along with standard ± 10V analog and

stepper outputs, XMP will offer an

interface to SERCOS fiber-optic devices

and also support PWM outputs in the

future.

Distributed control

The XMP’s modular hardware design

could also be segmented to accommo-

date distributed control. The SHARC

DSP subsystem would remain with the

host as a server for individual client

nodes located near the motors and

drives. The DSP server would calculate

motion trajectories and pass data to

motion block clients across a high-

speed TCP/IP or other communication

network.

Host Computer

Remote Host running
Motion Console

Remote
Communications
Link

Machine

TCP/IP LinkSHARC DSP
Subsystem
(Server)

Motion Block
Subsystem
(Client)

Motor

Motor

Motor

Motor

Motion Block
Subsystem
(Client)

Motor

Motor

Motion Block
Subsystem
(Client)

Current and future XMP output options

Projected XMP distributed control scenario

Axes 6-7Axes 2-3

Pin Signal Signal Pin
1 EncA_A+ EncA_A- 35
2 EncA_B+ EncA_B- 36
3 EncA_I+ EncA_I- 37
4 Enc2_A+ Enc2_A- 38
5 Enc2_B+ Enc2_B- 39
6 Enc2_I+ Enc2_I- 40
7 Home2_IN 5V_OUT 41
8 Pos_Lim2_IN Gnd 42
9 Neg_Lim2_IN HomeLim2_Rtn 43
10 Cmd_Dac_OUT_2 AGnd 44
11 Aux_Dac_OUT_2 AGnd 45
12 Amp_Flt2_IN Amp_Flt2_IN 46
13 Amp_En2_Collector Amp_En2_emitter 47
14 UserIO_A3 UserIO_A3_Rtn 48
15 Xcvr2A+ Xcvr2A- 49
16 Xcvr2B+ Xcvr2B- 50
17 Xcvr2C+ Xcvr2C- 51
18 Enc3_A+ Enc3_A- 52
19 Enc3_B+ Enc3_B- 53
20 Enc3_I+ Enc3_I- 54
21 Home3_IN 5V_OUT 55
22 Pos_Lim3_IN Gnd 56
23 Neg_Lim3_IN HomeLim3_Rtn 57
24 Cmd_Dac_OUT_3 AGnd 58
25 Aux_Dac_OUT_3 AGnd 59
26 Amp_Flt3_IN Amp_Flt3_Rtn 60
27 Amp_En3_Collector Amp_En3_Emitter 61
28 Gnd Gnd 62
29 Xcvr3A+ Xcvr3A- 63
30 Xcvr3B+ Xcvr3B- 64
31 Xcvr3C+ Xcvr3C- 65
32 Gnd AGnd 66
33 Analog_IN_2+ Analog_IN_2- 67
34 Analog_IN_3+ Analog_IN_3- 68

Axes 4-5

Pin Signal Signal Pin
1 UserIO_B0 UserIO_B0_Rtn 35
2 UserIO_B1 UserIO_B1_Rtn 36
3 Gnd Gnd 37
4 Enc4_A+ Enc4_A- 38
5 Enc4_B+ Enc4_B- 39
6 Enc4_I+ Enc4_I- 40
7 Home4_IN 5V_OUT 41
8 Pos_Lim4_IN Gnd 42
9 Neg_Lim4_IN HomeLim4_Rtn 43
10 Cmd_Dac_OUT_4 AGnd 44
11 Aux_Dac_OUT_4 AGnd 45
12 Amp_Flt4_IN Amp_Flt4_IN 46
13 Amp_En4_Collector Amp_En4_Emitter 47
14 UserIO_B2 UserIO_B2_Rtn 48
15 Xcvr4A+ Xcvr4A- 49
16 Xcvr4B+ Xcvr4B- 50
17 Xcvr4C+ Xcvr4C- 51
18 Enc5_A+ Enc5_A- 52
19 Enc5_B+ Enc5_B- 53
20 Enc5_I+ Enc5_I- 54
21 Home5_IN 5V_OUT_2 55
22 Pos_Lim5_IN Gnd 56
23 Neg_Lim5_IN HomeLim5_Rtn 57
24 Cmd_Dac_OUT_5+ AGnd 58
25 Aux_Dac_OUT_5+ AGnd 59
26 Amp_Flt5_IN Amp_Flt5_Rtn 60
27 Amp_En5_Collector Amp_En5_Emitter 61
28 Gnd Gnd 62
29 Xcvr5A+ Xcvr5A- 63
30 Xcvr5B+ Xcvr5B- 64
31 Xcvr5C+ Xcvr5C- 65
32 Gnd AGnd 66
33 Analog_IN_4+ Analog_IN_4- 67
34 Analog_IN_5+ Analog_IN_5- 68

Pin Signal Signal Pin
1 Analog_IN_6+ Analog_IN_6- 35
2 Analog_IN_7+ Analog_IN_7- 36
3 Gnd AGnd 37
4 Enc6_A+ Enc6_A- 38
5 Enc6_B+ Enc6_B- 39
6 Enc6_I+ Enc6_I- 40
7 Home6_IN 5V_OUT 41
8 Pos_Lim6_IN Gnd 42
9 Neg_Lim6_IN HomeLim6_Rtn 43
10 Cmd_Dac_OUT_6 AGnd 44
11 Aux_Dac_OUT_6 AGnd 45
12 Amp_Flt6_IN Amp_Flt6_Rtn 46
13 Amp_En6_Collector Amp_En6_Emitter 47
14 UserIO_B3 UserIO_B3_Rtn 48
15 Xcvr6A+ Xcvr6A- 49
16 Xcvr6B+ Xcvr6B- 50
17 Xcvr6C+ Xcvr6C- 51
18 Enc7_A+ Enc7_A- 52
19 Enc7_B+ Enc7_B- 53
20 Enc7_I+ Enc7_I- 54
21 Home7_IN 5V_OUT 55
22 Pos_Lim7_IN Gnd 56
23 Neg_Lim7_IN HomeLim7_Rtn 57
24 Cmd_Dac_OUT_7 AGnd 58
25 Aux_Dac_OUT_7 AGnd 59
26 Amp_Flt7_IN Amp_Flt7_Rtn 60
27 Amp_En7_Collector Amp_En7_Emitter 61
28 Gnd Gnd 62
29 Xcvr7A+ Xcvr7A- 63
30 Xcvr7B+ Xcvr7B- 64
31 Xcvr7C+ Xcvr7C- 65
32 EncB_A+ EncB_A- 66
33 EncB_B+ EncB_B- 67
34 EncB_I+ EncB_I- 68

XMP-PCI expansion board
(12 or 16 axes only)

Scale
Interpolation
Module

Scale
Interpolation
Module

CBL-68

CBL-68
XMP-PCI main board

(4,6, or 8 axes)

STC-136 STC-136

SHARC

SELECTED FUNCTIONS/METHODS

Control

ControlAddress() Get original address of control
object

ControlError() Get platform-specific error info

ControlInit() Initialize Control object

ControlInteruptEnable() Enable XMP interrupts

ControlInterruptWait() Wait for controller interrupt

ControlInterruptWake() Wake all threads waiting for control-
ler interrupt

ControlConfigGet/Set() Get/set config of Control object

ControlType() Get type of Control object

Axis

AxisActualPositionGetSet() Get/set actual position

AxisCommandPositionGet/Set() Get/set command position

AxisControl() Return handle of Control associated
with an Axis

AxisMemory() Set axis memory address

AxisMemoryGet/Set() Get/set bytes of Axis memory and
put into application memory

AxisStatus() Get Axis status

AxisTrajectoryGet/Set() Get Axis trajectory

Motion

MotionAction() Perform specified action on motion

MotionModify() Modify parameters of Motion while
it is executing

MotionNumber() Get index of Motion

MotionParamsGet/Set() Get/set Motion parameters

MotionPositionGet/Set() Get/set position parameters of all
Axes associated with Motion

MotionStart() Start Motion (idle state to moving
state)

MotionTrajectoryGet/Set() Get/set trajectories for all axes
associated with Motion

Filter

FilterConfigGet/Set() Get/set Position config

FilterFeedbackGet() Get feedback position

FilterHomeLatchClear() Clear home latch associated with
Position

FilterPositionGet/Set() Get/set actual and command
positions

FilterStatus() Get Position status

FilterAxisAppend() Append axis to list of Axes

FilterAxisCount() Return the number of Axes in list

FilterAxisRemove() Remove Axis from list

Motor

MotorAmpEnableGet/Set() Get/set state of amp enable output

MotorAxisMapGet() Get object map of axes

MotorConfigGet/Set() Get/set Motor configuration

MotorEventConfigSet() Set Motor’s event configuration

MotorMemory() Get address of Motor memory

MotorStatus() Get Motor status

EventMgr

EventMgrEvent() Request event notification for all
Notify objects on EventMgr’s list

EventMgrFlush() Flush pending EventMgr events

EventMgrService() Get list of all pending asynchronous
events

EventMgrControlListSet() Get list of Control objects associated
with EventMgr

EventMgrControlListSet() Create a list of Control objects
associated with EventMgr

EventMgrNotifyListInsert() Place a Notify object after another
Notify object in list

EventMgrNotifyListGet/Set() Get/set list of Notify objects

Sequence

SequenceEventNotifySet() Enable host notification of Sequence
events

SequenceLoad() Load Sequence commands into
firmware

SequenceMemory() Set address used to access Sequence
memory

SequenceNext() Get handle to next command in list

SequencePageSize() Set amount of memory available for
commands used by sequence

SequenceResume() Resume execution of Sequence

SequenceStart() Start execution of Sequence

SequenceStep() Execute specified steps of a stopped
sequence

SequenceCommandInsert() Insert command into Sequence

Recorder

RecorderEventNotifyGet/Set Get/set mask of events for which
host notification has been requested

RecorderEventReset Reset the events specified in event
mask that are generated by Recorder

RecorderMemoryGet Copy data from Recorder memory
to application memory

RecorderMemorySet Copy data from application memory
to Recorder memory

RecorderRecordGet Get records from Recorder

RecorderStart Start recording data records using
Recorder

XMP SPECIFICATIONS

Processor

• Analog Devices SHARC DSP

• 32-bit floating-point

• 150 MFLOPS

System interfaces

• PCI and CompactPCI busses

• 32-bit direct memory interface

• High-speed binary communications
across the bus

• Contact MEI for other bus and
networking options

Software development

• C/C++ programmable

• Object-oriented API: Motion
Programming Interface (MPI)

• Operating systems: Windows NT,
Windows 95/98, VenturCom, and
selected real-time operating systems

Motion control capabilities

• Supports up to 16 axes

• Point-to-point motion

• Multi-axis coordinated motion

• Multi-axis synchronized motion

• Electronic gearing & camming

• Optional sinusoidal commutation

• Optional scale interpolation

• Trapezoidal, parabolic, and
S-curve profiles

• Custom trajectories

• Asymmetric & symmetric profiles

• Velocity moves

• On-the-fly trajectory modification

• On-board settling

• 2D compensation tables

• Position capture

• Position compare

• Dual-loop support

• Velocity-generated events

• Gantry algorithms

• Circular interpolation

Kinematic ranges

• Position: 32-bit floating-point (±2.15
billion counts)

• Velocity, acceleration, and jerk:
32-bit floating-point

Analog inputs

• 8 channels differential input

• 16-bit resolution

• Programmable input range:
±1.25V to ±10V

• Single channel bandwidth of 50 kHz

• Analog (joystick) jogging

• Force feedback

Dedicated I/O

• Five opto-isolated signals per axis

• Inputs: home, positive limit, negative
limit, amp-fault

• Output: amp enable

• Dedicated system inputs for E-stop
and reset

• 5-24V logic

Transceiver I/O

• Up to 48 lines

• EIA-422

• Used for step-and-direction, CW/CCW,
position capture, position compare,
or general purpose

User I/O

• Up to 16 lines

• Opto-isolated

• 5V or 24V

• 30 mA source or sink

Connectors

• 68-pin VHDCI connectors (SCSI-4)

• Shielded twisted-pair cables

System safety

• Encoder integrity checking prevents
runaway conditions caused by
broken or shorted encoder wires

• On-board watchdog timer with host
handshaking

• Switched analog outputs protect on:

- power failure/brownout

- power-up and following reset

- dedicated E-stop input

Environmental conditions

• Operating temperature: 0-50 degrees C

• Humidity: 20 - 90% RH,
non-condensing

Servo output

• ±10V at 16-bit resolution with 16-bit
monotonicity

• Pulse train output (to 4 MHz for
pulse-controlled servos)

• Simultaneous update of all axes

• Outputs with high drive capability (2
kΩ load in parallel with 200 pF)

• Optional sinusoidal commutation for
up to 16 axes

Servo loop update rate

• User-programmable rate

• Maximum: 10 kHz (8 axes),
5 kHz (16 axes)

Step output

• Maximum step frequency: 4 MHz

• Step/direction or CW/CCW

• Open or closed loop control

• Minimum pulse width: 200 nsec

• EIA-422 Line Driver output

SERCOS interface

• Support for up to 24 axes

• 2, 4, 8, or 16 Mbits/sec

• Digital fiber-optic connection to
drives

Control algorithms

• PID or PIV control with velocity,
friction, and acceleration feedforward

• Support for custom control algorithms

Filter toolkit

• Used for designing multi-stage low-
pass and notch filters

• Automatically calculates digital
coefficients

• Post-PID cascading biquad filter

Position feedback

• Incremental encoder: 40 MHz
(10 MHz quadrature input),
single-ended or differential

• EIA-422 line receivers

• Digital noise filtering

• Position capture and position compare

• Optional scale interpolation (1,024x)

Corporate Headquarters
33 South La Patera Lane

Santa Barbara, California 93117

ph 805-681-3300

fax 805-681-3311

e-mail info@motioneng.com

www.motioneng.com

Eastern Regional Office
30 Nagog Park

Boston, Massachusetts

ph 978-264-0051

fax 978-264-0057

Midwestern Technical Support Office
5519 N. Cumberland Avenue

Suite 1011

Chicago, Illinois

ph 773-631-4992

fax 773-631-4936

Philadelphia Development Office
790 Pennlyn Blue Bell Pike

Suite 204

Philadelphia, Pennsylvania

ph 215-793-4220

fax 215-793-4223

Tokyo Regional Office
Asahiko Building 4F

3-1 Kagurazaka, Shinjuku-ku

Tokyo 162 Japan

ph 03-5229-7007

fax 03-3235-5655

e-mail info@motioneng.co.jp

Nagoya Technical Support Office
102 Top Hill 2

20-2 Sokuten, Akebono-cho

Toyohashi-shi

Aichi, Japan 441

ph 0532-45-3511

fax 0532-45-5415

All trademarks are the property of respective owners.
All specifications are subject to change without notice.

Rev 10/98

