
re-
Release Note

DSP Series
Sinusoidal Commutation v2.0b4

Option H001-0022 Motion Library Version 2.5.05 Dec 18 98
Firmware Version 2.40, Rev G4, Opt 1

1.0 Introduction 2
2.0 Overview of Sinusoidal Commutation 2
3.0 Hardware Requirements 2

4.0 Installation 3
4.1 Wiring for Sinusoidal Commutation 3
4.2 Loading the Software 4
4.3 Loading the Sinusoidal Commutation Firmware 4

5.0 Operation 5
5.1 Sinusoidal Commutation Developer’s Toolkit 5
5.2 Sinusoidal Commutation Development Software 6
5.2.1 Closed Loop Commutation Initialization Programs 6
5.2.2 Commutation Parameters 9
5.2.3 Sample Closed Loop Commutation Initialization Programs 10
5.2.4 Bidirectional Limit Switch Protection Feature 10

6.0 Code Listings 11
6.1 step_abc.c 11
6.2 dith_abc.c 12

Changes from Previous Release v2.0b3
Removed I/O monitoring (Contact MEI if your application requires it)

Added Bidirectional limit switch checking option in firmware (with no command velocity requi
ments). Refer to Section 5.2.4 for implementation details.

Default Configuration

• Standard hardware limit checking (with command velocity requirement in direction of active limit)

• Backwards-compatible with previous SinComm Release v2.0b3, Firmware 2.40, Rev G3, Opt 1

33 South La Patera Lane
Santa Barbara, CA 93117-3214
ph (805) 681-3300
fax (805) 681-3311
tech@motioneng.com
www.motioneng.com
DSP Sinusoidal Commutation Release Note 1

ple-

he third
h exter-
 of sinu-
utated

.
rtional
se-
 this sta-
the case
gnetic
ases

orienta-

ance.
r wind-

 MEI
tation:
1.0 Introduction
This document provides an overview of concepts for external sinusoidal commutation, and detailed im
mentation instructions for DSP Series motion controllers.

The latest DSP Series hardware revisions support sinusoidal commutation as an option. DAC outputs from 2
axes are used to provide 'A' and 'B' phase sinusoidal signals that are phase-shifted by 120 degrees. T
commutation signal is generated by balance loops in the power stage of the servo amplifier. Thus, eac
nally commutated motor requires 2 controller axes. For example, an 8-axis card can drive up to 4 axes
soidally commutated motion. In addition, the firmware also supports mixed commutated and non-comm
axes on the same controller card.

2.0 Overview of Sinusoidal Commutation
A brief review of commutation basics will be helpful before discussing external sinusoidal commutation
Motors rotate due to the torque produced by 2 interacting magnetic fields. The resultant torque is propo
to the magnitudes of the rotor and stator fields, times the sine of the angle between the 2 vectors. Con
quently, maximum torque is produced when the stator and rotor angles are at 90 degrees. Maintaining
tor phase advance is a goal of the sinusoidal commutation scheme (also known as "vector control'). In
of the permanent magnet brushless motor, the rotor has permanent magnets which provide a fixed ma
field. The external stator windings are switched to maintain a revolving magnetic field. Ideally, the 3 ph
are not switched, but controlled in a way to provide a uniformly revolving stator magnetic vector.

The process of rotating the magnetic field as a function of rotor position is called commutation. Historically,
there have been 2 types of commutation schemes:

• the motor performs the commutation itself (self-commutating)

• the motor amplifier performs the commutation (used in most brushless motor applications)
Traditionally, brushless servo motors use Hall sensors to provide coarse detection of the angular
tion of the rotor.

These 2 commutation techniques work well in many applications. However, systems that need low torque rip-
ple and excellent velocity regulation at low speeds require external sinusoidal commutation.

External sinusoidal commutation optimally energizes the motor windings to obtain peak motor perform
When a high-resolution encoder is used for feedback, the controller can precisely energize each moto
ing in a sine type relationship. The result is a motor with nearly constant torque throughout the motor cycle,
unlike traditional Hall sensor commutation.

External sinusoidal commutation offers you these benefits:

• Low torque ripple
• Improved motor smoothness at low speeds
• More efficient drives, with less heat dissipation
• Potential reduction in system costs (because Hall sensors are not required)

3.0 Hardware Requirements
Sinusoidal commutation requires 2 controller axes per motor for the DSP series cards. In addition, only
boards beginning with the following revision numbers have the hardware to support sinusoidal commu

Controller Rev

PCX/DSP 4

STD/DSP 8

104/DSP 6

LC/DSP 8

V6U/DSP 2
DSP Sinusoidal Commutation Release Note 2

 begin
-

 to orig-

se, the

d by
4.0 Installation

4.1 Wiring for Sinusoidal Commutation
Since 2 MEI axes are used for each motor, we recommend that the pair of axes used for commutation
with the even-numbered axis. This will enable the even-numbered axis to drive Phase A, and the odd-num
bered axis to drive Phase B. This scheme simplifies the wiring by enabling all of the necessary signals
inate from one header.

Motion should be commanded to the axis configured to drive Phase A. Beginning with the 2.5.05 relea
Phase B DAC may now be directed to any other axis using software commands.

The following connector pinouts provide an example of encoder and drive connections for PCX/DSP, VME/
DSP (both V6U and V3U), and STD/DSP controllers:

An example of connector pinouts for the 104/DSP and LC/DSP controllers are:

The DSP Series Controllers use single-ended analog outputs. Optimum noise rejection can be achieve
using shielded cables and adhering to single-point grounding practices.

Note You must assign the Phase B DAC a higher axis number than the Phase A DAC (axis).

Pin Signal

1 Gnd

2 5V

3 Encoder A+

4 Encoder A-

5 Encoder B+

6 Encoder B-

7 Index +

8 Index -

9 Phase A Analog Output

22 Phase B Analog Output

Pin Signal

1 5V

2 Encoder A+

3 Encoder A-

4 Encoder B+

5 Encoder B-

6 Index +

7 Index -

8 Phase A Analog Output

9 Phase B Analog Output

22 Gnd
DSP Sinusoidal Commutation Release Note 3

sted:

-

e
pleted,

n envi-
tting to

oard

ard
,
4.2 Loading the Software
Copy the files from the distribution media to your hard drive. The following directory structure is sugge

4.3 Loading the Sinusoidal Commutation Firmware
The sinusoidal commutation firmware must be downloaded to the controller by using the config.exe pro-
gram (or by using Motion Console). You can use the config.exe program to download firmware to the control
ler, configure the DAC offsets, and perform some basic tests of the axes.

1. To download the firmware, switch to the mei\sinecomm\firmware directory where config.exe is stored,
and from the DOS prompt, execute:

config -f 8axisc.abs

2. The config.exe program will first load the standard 8axis.abs firmware and run tests in order to determin
the number of axes on the card and the internal offsets of the axes. After the tests have been com
config.exe will load 8axisc.abs with the appropriate internal axis offsets.

Note that the configured axis offsets are saved into the firmware downloaded to the DSP Series board,
and are not saved to the firmware files on the hard drive. If there are any problems, the config.exe pro-
gram will display error messages.

3. If your board is configured for a base address other than the default (0x300), you will need to set a
ronment variable called DSP to the desired address. For example, to set the DSP base address se
0x280, from the DOS prompt, execute:

set DSP=base:0x280

The setup.exe and config.exe programs will then automatically read the DSP variable and access the b
at address 0x280. Note that you may also insert this command into the autoexec.bat file for automatic
execution at system boot time.

Directory Files

c:\mei\sinecomm Release notes (and subdirectories below)

c:\mei\sinecomm\firmware Firmware files and utilities to configure
controller

c:\mei\sinecomm\samples Sample programs

c:\mei\sinecomm\utils Utility programs

Safety
Note

Before running config.exe,
disconnect all of the cables from the DSP Series controller
and turn off the power to any external devices (amplifiers, etc.).

When config.exe is executed, all previous configurations stored in the DSP's boot memory will
be lost.

Note Jogging, analog feedback, parallel feedback and I/O Monitoring are not supported in the stand
commutation release. If you have an application that require these features with commutation
please contact MEI for more information.
DSP Sinusoidal Commutation Release Note 4

from
r all
urrent
the cur-

-

l-

es may
cess
e points

cond,

otor

 the
5.0 Operation
Successful motor commutation requires initialization wherein the armature's field vector is determined
the feedback system. The feedback system and motion controller then track the field vector position fo
subsequent moves. During these moves, the DSP Series controller calculates the 90 degree (stator) c
phase advance required for closed loop operation, and its PID algorithm determines the magnitude of
rent vector.

Two techniques are described in Section 5.2.1 for initial armature phase-finding. Before running the phase-
finding software, you must determine the exact number of encoder counts per electrical cycle.

On encoder specification sheets, this term is often called the number of encoder counts per revolution.
On motor specification sheets, this term is often called the number of electrical cycles (or pole-pairs) per rev
olution.

Use the open loop utility programs (counts.exe, cycles.exe) to verify the parameters to be used in your initia
ization code.

5.1 Sinusoidal Commutation Developers Toolkit
The developer's toolkit includes 3 software tools:

srate.exe Sample rate modification program.

counts.exe Open loop commutation program. Counts.exe counts the number of encoder counts per
electrical cycle, and also provides motor phasing information (ABC or ACB).

cycles.exe Open loop commutation program. Cycles.exe counts the number of electrical cycles per
motor revolution, and also provides motor phasing information (ABC or ACB).

srate.exe - Sample Rate Modification for Commutation

Use srate.exe to change the sample rate of the card. At the DOS prompt, execute:

srate

Follow the prompts to change the sample rate of the card. If the card cannot attain the specified rate, srate.exe
will set the sample rate to the highest possible value.

Operation of rotary motors at very high speed (>100 electrical cycles per second) and low sampling rat
provide too few points to properly define the drive's 3 sinusoidal electrical cycles. The result can be ex
current use and degraded motor life (due to higher heat dissipation). MEI recommends at least 8 sampl
per electrical cycle to maintain low motor current levels.

The DSP controller’s firmware incorporates a velocity-based phase advance which reduces sample-rate
latency effects. If your application requires commutation rates greater than 150 electrical cycles per se
please contact MEI for technical support.

counts.exe - Open Loop Commutation Program

Use counts.exe to commutate a motor in open-loop mode, which is typically useful when initializing the m
as part of a startup sequence. Counts.exe requires 3 parameters:

• AXIS an integer specifying the axis to commutate (Phase A)
and an integer specifying the Phase B axis.

• VOLTAGE a double precision value specifying the voltage (proportional to current) to apply during
open loop portion of the commutation.

Counts.exe will commutate the motor for one electrical cycle and report the approximate number of encoder
counts per electrical cycle. Please note that this number is only an approximation. Counts.exe will also return
motor phasing information.

For safety, counts.exe will leave the amplifier in a disabled state and will also zero the PID coefficients.
After executing counts.exe and before running the commutation initialization program, you must restore the
PID coefficients.
DSP Sinusoidal Commutation Release Note 5

en

the

coder

he

a

ze.

-

-

cycles.exe - Open Loop Commutation Program

Use cycles.exe to commutate a motor in open loop mode. Cycles.exe requires 4 parameters:

• AXIS -an integer specifying the axis to commutate (Phase A)
-an integer specifying the Phase B axis.

• VOLTAGE -a double value specifying the voltage (proportional to current) to apply during the op
loop portion of the commutation.

• COUNTS -an integer specifying the number of encoder counts per revolution in quadrature for
motor.

Cycles.exe will commutate the motor in open loop mode for the distance specified (as the number of en
counts). When the commutation is completed, cycles.exe will display both the phasing of the motor relative to
the encoder and the number of electrical cycles per revolution. You will need these values to initialize t
closed loop commutation.

For safety, cycles.exe will leave the amplifier in a disabled state and will zero the PID coefficients.
After executing cycles.exe and before running the commutation initialization program, you must restore the
PID coefficients.

5.2 Sinusoidal Commutation Development Software
The source code file sincomm.c and header file sincomm.h contain all of the code that you need to initialize
motor for commutation.

Section 5.2.1 describes 2 phase-finding techniques and their input parameters.
Section 5.2.2 describes the commutation parameters.
Section 5.2.3 describes sample programs (2 programs are listed in Section 6.0).
Section 5.2.4 describes the bidirectional limit switch safety feature, and how to implement it.

5.2.1 Closed-Loop Commutation Initialization Programs
MEI currently supports 2 commutation initialization methods in the 2.5.05 Release:

Stepper Mode Method: Set the magnetic vector, wait for motor to settle, then initialize.

Dither Mode Method: Dither the stator magnetic vector until rotor position is known, then initiali

Note

Important!

We recommend that you initially use low DAC voltage levels to protect the motor windings. Be-
fore you set the phase-finding open loop current parameters, you should verify the safe continu
ous current levels for your motor/drive combination.

It is also good practice to install fuses for each of the 3 motor windings during this initial devel
opment period, to prevent damage to your motor.

Note
The dsp_reset(...) command will reconfigure the card from boot memory, and the commutation
index (determined from the phase-finding sequence) will be lost.

Amplifiers should be turned off during a reset!
After the reset, the commutation phase initialization procedure must be implemented.
DSP Sinusoidal Commutation Release Note 6

on

ion
he
ing
Stepper Mode Method (comm_init_set_vector):

Generally, the Stepper Mode initialization method is the preferred method for initialization. The Stepper Mode
initialization method sets the stator magnetic vector and draws the armature vector into a known locati
within one electrical cycle. The rotor is initially pulled into a magnetic position 120 electrical degrees in
advance of the "A" phase position. Next, the rotor is drawn back to the "A" phase position. This 2 posit
"stepper" technique is used to avoid initializing the rotor at a null position 180 electrical degrees from t
assumed rotor position. Initialization occurs following a waiting period for the motor to settle. The follow
2 diagrams illustrate the method.

Note Initialization of large inertial loads with minimal friction (i.e., low damping coefficients) may re-
quire several minutes to settle (see parameter delay.settle in next figure).

This figure shows the A & B phase voltage history during step phase-finding for an ABC phasing
configuration.
DSP Sinusoidal Commutation Release Note 7

e
ver,

nta-
ation,
g this
 for
he
easure-
es,
Dither Mode Method (comm_init_dither):

Use the Dither Mode initialization method in situations where drawing the motor to a stator pole will caus
excessive initial movement of the load. An example of this might be initializing near a limit switch. Howe
the Dither Mode method requires that you be more aware of the response of the system.

The Dither Mode initialization method locates the armature position by setting a known stator vector orie
tion, and then waits to see the direction of the initial armature acceleration. Based on the initial acceler
the angular extent of the region containing the armature vector can be continually reduced by repeatin
process. The goal of having small position change during the dithering cycle may require initial testing
optimum open loop voltage and time period for acceleration averaging (see additional descriptions in t
upcoming commutation parameters table). Because force/torque induced acceleration is the critical m
ment for successful dithering, systems subjected to external forces (i.e., gravitation force on vertical ax
large cable carrier forces, etc.) will not be suitable to use the Dither Mode initialization method.

This figure shows the A & B phase voltage history during step phase-finding for an ACB phasing
configuration.
DSP Sinusoidal Commutation Release Note 8

5.2.2 Commutation Parameters
The required input parameters for the commutation data structure are listed below.

Input Parameters

Axis An integer specifying the axis to commutate.
This corresponds to the "A" phase axis. (e.g., 0 - 7)

Phase_B_Axis A second controller axis used for the “B” phase signal. (e.g., 1- 7)
Note that the phase “B” axis number must be greater than the phase “A” axis number.

Counts_Per_Comm_Cycle The number of encoder counts (in quadrature) per revolution of motor.

For a linear motor, this would be the number of counts per one electrical cycle.

For rotary motors, counts_per_comm_cycle does not necessarily correspond to the number
of counts per electrical cycle. (e.g., 4096)

Electrical_Cycles The integer number of electrical cycles (pole pairs) per motor revolution.

The software will automatically account for systems requiring up to 5 electrical cycles, where
the modulus of [counts_per_comm_cycle]/[electrical_cycles] is zero.
Linear motors use the integer value, one. (e.g., 1 - 5)

Phasing The motor/amplifier phasing may be ABC (where the A phase immediately leads the B phase)
or ACB (A phasing immediately leading the C phase).

Use macros: PHASING_ABC or PHASING_ACB.
DAC_Start Is the open loop DAC output used during Stepper Mode phase-finding and also the initial volt-

age used during Dither Mode phase-finding.

Verify safe continuous motor current levels BEFORE setting the DAC_Start level. (0 - 32767,
Max. 32,767 corresponds to 10V. Typical value= 3000)

DAC_Step Is the DAC voltage increment used during Dither Mode phase-finding, to step from the value
DAC_Start until rotor movement is detected. (DAC output level will be limited below
DAC_Limit).

Note that DAC_Step is not used for Stepper Mode phase-finding. (0 -32767, typical= 500)
DAC_Limit The maximum DAC output limit to be used during Dither Mode phase-finding. (0 - 32767,

typical value= 6000)
Max_Check_Voltage Max_Check_Voltage is a motor safety feature that checks for unsuccessful phasing finding.

Following the phase-finding procedure and while servoing on position, the A and B phase
DACs should be providing relatively small voltage outputs to the amplifier. If the absolute val-
ues of these voltage outputs to the amplifier exceed Max_Check_Voltage , then the software
will disable the amplifier. (0 - 32767, Max. 32,767 corresponds to 10V. Typical value: 3000)

Check_Delay Following the phase-finding procedure, Check_Delay is the delay period (in seconds) used
for settling prior to checking the DAC outputs (using the Max_Check_Voltage).

Due to the rollover of an unsigned16,
Check_Delay must not exceed [65535/dsp_sample_rate]).
(Suggested values: 1 - 5 seconds)

Duration_of_Check Following the phase-finding procedure and settling time (Check_Delay),
Duration_of_Check is the time period (in seconds) during which the DSP will verify that the
A and B phase DACs do not exceed Max_Check_Voltage .

Due to the roll-over of an unsigned16,
Duration_of_Check must not exceed [65535/dsp_sample_rate]).
(Suggested values: 1 - 5 seconds)

Delay.Settle The time period (in seconds) used to wait for motion to settle during Stepper Mode initializa-
tion moves. Note that this value is used 4 times during the Stepper Mode initialization
sequence. (Suggested values: 5 - 60 seconds)

Delay.Dither.Vel The time period (in sample periods) over which velocity is averaged from position updates
during Dither Mode initialization. (Suggested values: 5 - 10 samples)

Delay.Dither.Acc The time period (in sample periods) over which acceleration is averaged from
Delay.Dither.Vel updates in velocity. Like Delay.Dither.Vel , Delay.Dither.Acc is
only used for Dither Mode initialization. (Suggested values: 5 - 10 samples)
DSP Sinusoidal Commutation Release Note 9

ecifica-

si-

suc-
 posi-

 stan-

figu-
bina-

r, the

limit

bles
5.2.3 Sample Closed-Loop Commutation Initialization Programs
To phase-find the rotor position, use one of the following 4 example programs (using your system's sp
tions):

• step_abc.c Sets the magnetic stator vector and draws the rotor (field vector) into a known po
tion. Resets position and closes servo loop. The sequence uses ABC phasing.

• step_acb.c Does the same as step_abc.c, only with ACB phasing.

• dith_abc.c Open loop dithers stator vector while monitoring rotor position (acceleration). By
cessive approximation, it determines the phase position of the rotor. It also resets
tion and closes the servo loop. Uses ABC phasing.

• dith_acb.c Does the same as dith_abc.c, only with ACB phasing.

5.2.4 Bidirectional Limit Switch Protection Feature
The latest version of MEI commutation firmware offers bidirectional limit switch protection, both during
open-loop phase-finding and during normal closed loop operation. Previous commutation firmware and
dard DSP firmware (non-commutation) required that an activated limit switch must also be in the direction of
commanded velocity, to generate a hardware limit event. (This simplifies limit recovery.)

In order to offer backwards-compatibility, the directional limit switch option is retained as the default con
ration for the new firmware. A single function call to DSP external memory can configure any axis com
tion to have full limit switch protection, independent of the direction of command velocity. This ensures
greater hardware safety, particularly during initial testing with external sinusoidal commutation. Howeve
full limit switch protection feature eliminated the I/O monitoring capability, and requires extra steps for
switch recovery.

How to Configure Bidirectional Limit Switch Protection:

Write a configuration word to the address 0x36E8. The default state is 0. Bit 0 enables Axis 0, bit 1 ena
Axis 1, and so on.

/* Configure Axes 0 - 7 for special limit switch protection */
int16 bit_num;
bit_num = 0x00FF;
dsp_write_dm(0x36E8, bit_num)

How to Recover from a Limit Switch Event:

Option 1 Manually move the stage/motor from the active limit.

Option 2 Restore the default limit configuration [dsp_write_dm(0x36E8, 0x0000)], and imple-
ment an open-loop move away from the active limit.
DSP Sinusoidal Commutation Release Note 10

6.0 Code Listings

6.1 step_abc.c
/* Step_ABC.C

:Sinusoidal commutation configuration and initialization.

Program uses Stepper Type motor initialization with ABC Phasing

Written for Version 2.5

Warning! This is a sample program to assist in the integration of the
 DSP-Series controller with your application. It may not contain all
 of the logic and safety features that your application requires.
*/

include <stdio.h>
include <stdlib.h>
include "sincomm.h"

#define lmtaddr 0x36E8

void error (int16 error_code)
{

char buffer[MAX_ERROR_LEN];

switch (error_code)
{

case DSP_OK:
/* No error, so we can ignore it. */
break ;

default:
error_msg(error_code, buffer) ;
fprintf(stderr, "ERROR: %s (%d).\n", buffer, error_code) ;
exit(1);
break;

}
}

int main ()
{

Commutation_Init CInit;

int16 error_code;
int16 bit_num; /* bit word to configure optional HW limit protection */

error_code = do_dsp(); /* initialize communication with the controller */
error(error_code); /* any problems initializing? */

 /* standard limit configuration : HW protected only in direction of cmd vel*/
 // bit_num = 0x0000;

 /* configure Axes 0-7 for special limit switch protection in both
directions without cmd velocity requirement */
bit_num = 0x00FF;
dsp_write_dm(lmtaddr, bit_num);

/*
 * Set up user-defined SinComm settings */

 CInit.Axis = 0; /* Control & A phase axis */
 CInit.Phase_B_Axis = 1; /* B phase axis */
 CInit.Counts_Per_Comm_Cycle = 4096; /* Counts per rev */
 CInit.Electrical_Cycles = 2; /* Elec. cycles per rev */
 CInit.Phasing = PHASING_ABC; /* Phasing */
 CInit.Dac_Start = 3277; /* Stepper output value, 1.V */
 CInit.Dac_Step = 500; /* For dithering only, 0.015V */
 CInit.Dac_Limit = 16000; /* For dithering only, 5.V */
 CInit.Max_Check_Voltage = 6553; /* Safety check, 2 volts */
 CInit.Check_Delay = 2; /* Delay prior to check, sec */
 CInit.Duration_of_Check = 1; /* DAC checking time, sec*/
 CInit.Delay.Settle = 3; /* Delay used 4 times, sec*/
DSP Sinusoidal Commutation Release Note 11

/*
 * Configure axis for sinusoidal commutation. Sinusoidal commutation requires
 * two axes. The first axis is Phase A, the second axis is
 * Phase B. Phase C is generated by the servo drive. After sinusoidal
 * commutation is initialized, all motion will be commanded to the
 * Phase A axis.
 */

error(comm_configure(&CInit));
error(comm_init_set_vector(&CInit));

error(set_position(CInit.Axis, 0.0));/* zero out position */

 return 0;
}

6.2 dith_abc.c

/* Dith_ABC.C

:Sinusoidal commutation configuration and initialization.

Program uses Dithering Type motor initialization with ABC Phasing

Warning! This is a sample program to assist in the integration of the
 DSP-Series controller with your application. It may not contain all
 of the logic and safety features that your application requires.

Written for Version 2.5
*/

include <stdio.h>
include <stdlib.h>
include "sincomm.h"

#define lmtaddr 0X36E8

void error (int16 error_code)
{

char buffer[MAX_ERROR_LEN];

switch (error_code)
{

case DSP_OK:
/* No error, so we can ignore it. */
break ;

default:
error_msg(error_code, buffer) ;
fprintf(stderr, "ERROR: %s (%d).\n", buffer, error_code) ;
exit(1);
break;

}
}

int main ()
{

Commutation_Init CInit;

int16 error_code;
int16 bit_num; /* bit word to configure optional HW limit protection */

error_code = do_dsp(); /* initialize communication with the controller */
error(error_code); /* any problems initializing? */

 /* standard limit configuration : HW protected only in direction of cmd vel*/
 // bit_num = 0x0000;
DSP Sinusoidal Commutation Release Note 12

 /* configure Axes 0-7 for special limit switch protection in both
directions without cmd velocity requirement */
bit_num = 0x00FF;
dsp_write_dm(lmtaddr, bit_num);

/*
 * Set up user-defined SinComm settings
 */

 CInit.Axis = 0; /* Control & A phase axis */
 CInit.Phase_B_Axis = 1; /* B phase axis */
 CInit.Counts_Per_Comm_Cycle = 4096; /* Counts per rev */
 CInit.Electrical_Cycles = 2; /* Elec. cycles per rev */
 CInit.Phasing = PHASING_ABC; /* Phasing */
 CInit.Dac_Start = 3277; /* Stepper output value, 1.V */
 CInit.Dac_Step = 500; /* For dithering only, .015V */
 CInit.Dac_Limit = 16000; /* For dithering only, 5.V */
 CInit.Max_Check_Voltage = 6553; /* Safety check, 2 volts */
 CInit.Check_Delay = 2; /* Delay prior to check, sec */
 CInit.Duration_of_Check = 1; /* DAC checking time, sec*/
 CInit.Delay.Settle = 3; /* Delay used 4 times, sec*/

/*
 * Configure axis for sinusoidal commutation. Sinusoidal commutation requires
 * two axes. The first axis is Phase A, the second axis is
 * Phase B. Phase C is generated by the servo drive. After sinusoidal
 * commutation is initialized, all motion will be commanded to the
 * Phase A axis.
 */

error(comm_configure(&CInit));
error(comm_init_dither(&CInit));

error(set_position(CInit.Axis, 0.0)); /* zero out position */

 return 0;
}

DSP Sinusoidal Commutation Release Note 13

	Release Note
	DSP Series Sinusoidal Commutation v2.0b4
	Changes from Previous Release v2.0b3
	1.0 Introduction
	2.0 Overview of Sinusoidal Commutation
	3.0 Hardware Requirements
	4.0 Installation
	4.1 Wiring for Sinusoidal Commutation
	4.2 Loading the Software
	4.3 Loading the Sinusoidal Commutation Firmware

	5.0 Operation
	5.1 Sinusoidal Commutation Developers Toolkit
	5.2 Sinusoidal Commutation Development Software
	5.2.1 Closed-Loop Commutation Initialization Programs
	5.2.2 Commutation Parameters
	5.2.3 Sample Closed-Loop Commutation Initialization Programs
	5.2.4 Bidirectional Limit Switch Protection Feature

	6.0 Code Listings
	6.1 step_abc.c
	6.2 dith_abc.c

