T

Motion Engineering, Inc.

33 South La Patera Lane

Santa Barbara, CA 93117-3214

ph (805) 681-3300
fax (805) 681-3311
tech@motioneng.com
www.motioneng.com

Option HO01-0022

Release Note

DSP Series
Sinusoidal Commutation v2.0b4

Motion Library Version 2.5.05 Dec 18 98
Firmware Version 2.40, Rev G4, @t 1

1.0 Introduction 2
2.0 Overview of Sinusoidal Commutation 2
3.0 Hardware Requirements 2
4.0 Installation 3

4.1 Wiring for Sinusoidal Commutation 3
4.2 Loading the Software 4
4.3 Loading the Sinusoidal Commutation Firmware 4
5.0 Operation 5

51 Sinusoidal Commutation Developer’s Toolkit 5
5.2 Sinusoidal Commutation Development Software 6
5.2.1 Closed Loop Commutation Initialization Programs 6
5.2.2 Commutation Parameters 9
5.2.3 Sample Closed Loop Commutation Initialization Programs 10
5.2.4 Bidirectional Limit Switch Protection Feature 10
6.0 Code Listings 11
6.1 step_abc.c 11

6.2 dith_abc.c 12

Changes from Previous Release v2.0b3

Removed
Added

I/O monitoring (Contact MEI if your application requires it)

Bidirectional limit switch checking option in firmware (with no command velocity require-
ments). Refer t&ection 5.2.4or implementation details.

Default Configuration
« Standard hardware limit checking (with command velocity requirement in direction of active limit)
» Backwards-compatible with previous SinComm Release v2.0b3, Firmware 2.40, Rev G3, Opt 1
DSP Sinusoidal Commutation Release Note 1

1.0 Introduction

This document provides an overview of concepts for external sinusoidal commutation, and detailed imple-
mentation instructions for DSP Series motion controllers.

The latest DSP Series hardware revisions support sinusoidal commutation as amagtioatputs from 2

axes are used to provide 'A' and 'B' phase sinusoidal signals that are phase-shifted by 120 degrees. The third
commutation signal is generated by balance loops in the power stage of the servo amplifier. Thus, each exter-
nally commutated motor requires 2 controller axes. For example, an 8-axis card can drive up to 4 axes of sinu-
soidally commutated motion. In addition, the firmware also supports mixed commutated and non-commutated
axes on the same controller card.

2.0 Overview of Sinusoidal Commutation

A brief review of commutation basics will be helpful before discussing external sinusoidal commutation.
Motors rotate due to the torque produced by 2 interacting magnetic fields. The resultant torque is proportional
to the magnitudes of the rotor and stator fields, times the sine of the angle between the 2 vectors. Conse-
quently, maximum torque is produced when the stator and rotor angles are at 90 degrees. Maintaining this sta-
tor phase advance is a goal of the sinusoidal commutation scheme (also known as "vector control’). In the case
of the permanent magnet brushless motor, the rotor has permanent magnets which provide a fixed magnetic
field. The external stator windings are switched to maintain a revolving magnetic field. Ideally, the 3 phases
are not switched, but controlled in a way to provide a uniformly revolving stator magnetic vector.

The process of rotating the magnetic field as a function of rotor position is caffedutationHistorically,
there have been 2 types of commutation schemes:

 the motor performs the commutation itself (self-commutating)

 the motor amplifier performs the commutation (used in most brushless motor applications)
Traditionally, brushless servo motors use Hall sensors to provide coarse detection of the angular orienta-
tion of the rotor.

These 2 commutation techniques work well in many applications. However, systems thatuwieegue rip-
ple andexcellent velocity regulation at low spee&dguire external sinusoidal commutation.

External sinusoidal commutation optimally energizes the motor windings to obtain peak motor performance.
When a high-resolution encoder is used for feedback, the controller can precisely energize each motor wind-
ing in a sine type relationship. The result is a motor néérly constant torquehroughout the motor cycle,

unlike traditional Hall sensor commutation.

External sinusoidal commutation offers you these benefits:

« Low torque ripple

¢ Improved motor smoothness at low speeds

* More efficient drives, with less heat dissipation

« Potential reduction in system costs (because Hall sensors are not required)

3.0 Hardware Requirements

Sinusoidal commutation requires 2 controller axes per motor for the DSP series cards. In addition, only MEI
boards beginning with the following revision numbers have the hardware to support sinusoidal commutation:

Controller Rev
PCX/DSP 4
STD/DSP 8
104/DSP 6
LC/DSP 8
V6U/DSP 2

DSP Sinusoidal Commutation Release Note 2

4.0 Installation

4.1 Wiring for Sinusoidal Commutation

Since 2 MEI axes are used for each motor, we recommend that the pair of axes used for commutation begin
with theeven-numbered axi$his will enable the even-numbered axis to drive Phase A, and the odd-num-
bered axis to drive Phase B. This scheme simplifies the wiring by enabling all of the necessary signals to orig-
inate from one header.

Motion should be commanded to the axis configured to drive Phase A. Beginning with the 2.5.05 release, the
Phase BOAC may now be directetb any other axisising software commands.

Note | You must assign the PhaseédBC a higher axis numberthan the Phase BAC (axis)

The following connector pinouts provide an example of encoder and drive connectibaXfosR VME/
DSP(bothveu andVv3U), andSTD/DSPcontrollers:

Pin Signal

Gnd

5V

Encoder A+

Encoder A-

Encoder B+

Encoder B-

Index +

Index -

Phase A Analog Output
22 | Phase B Analog Output

© 0 N O O B WN P

An example of connector pinouts for th@ét/DSPandLC/DSPcontrollers are:

Pin Signal

5V

Encoder A+

Encoder A-

Encoder B+

Encoder B-

Index +

Index -

Phase A Analog Output
Phase B Analog Output
Gnd

© 00 N O OB~ WN PP

N
N

The DSP Series Controllers use single-ended analog outputs. Optimum noise rejection can be achieved by
using shielded cables and adhering to single-point grounding practices.

DSP Sinusoidal Commutation Release Note 3

4.2 Loading the Software

Copy the files from the distribution media to your hard drive. The following directory structure is suggested:

Directory Files

c:\mei\sinecomm Release notes (and subdirectories below)

c:\mei\sinecomnirmware Firmware files and utilities to configure
controller

c:\mei\sinecomnsamples Sample programs

c:\mei\sinecommutils Utility programs

4.3 Loading the Sinusoidal Commutation Firmware

The sinusoidal commutatidirmware must be downloadedto the controller by using trenfig.exeoro-
gram (or by using/otion Consolg You can use theonfig.exgprogram to download firmware to the control-
ler, configure thédAC offsets, and perform some basic tests of the axes.

Before runningconfig.exe
Safety | disconnectall of the cablesfrom the DSP Series controller
Note |andturn off the power to any external devices (amplifiers, etc.).

Whenconfig.exds executed, alprevious configurationsstored in the DSP's boot memavill
be lost

Note |Jogging, analog feedback, parallel feedback and I/O Monitoring are not supported in the standard
commutation release. If you have an application that require these features with commuiation,
please contact MEI for more information.

1. To download the firmware, switch to theei\sinecomm\firmwardirectory whereonfig.exds stored,
and from theDOS prompt, execute:

config -f 8axisc.abs

2. Theconfig.exgprogram will first load the standa8axis.abgirmware and run tests in order to determine
the number of axes on the card and the internal offsets of the axes. After the tests have been completed,
config.exewill load 8axisc.abawvith the appropriate internal axis offsets.

Note that the configured axis offsets are samealthe firmware downloaded to the DSP Series board
and are not saved to the firmware files on the hard drive. If there are any problecosfidhexepro-
gram will display error messages.

3. If your board is configured for a base address other than the default (0x300), you will need to set an envi-
ronment variable called DSP to the desired address. For example, to set the DSP base address setting to
0x280, from the DOS prompt, execute:

set DSP=base:0x280

Thesetup.ex@andconfig.exeprograms will then automatically read the DSP variable and access the board
at address 0x280. Note that you may also insert this command irstottiexec.batile for automatic
execution at system boot time.

DSP Sinusoidal Commutation Release Note 4

5.0 Operation

Successful motor commutation requires initialization wherein the armature's field vector is determined from
the feedback system. The feedback system and motion controller then track the field vector position for all
subsequent moves. During these moves, the DSP Series controller calculates the 90 degree (stator) current
phase advance required for closed loop operation, and its PID algorithm determines the magnitude of the cur-
rent vector.

Two techniques are describeddaction 5.2.Xor initial armature phase-finding. Before running the phase-
finding software, you must determine the exact numbenobder counts per electrical cycle

On encoder specification sheets, this term is often calleautmber of encoder counts per revolution
On motor specification sheets, this term is often calleditingber of electrical cycles (or pole-pairs) per rev-
olution.

Use the open loop utility programso{ints.exgcycles.exgto verify the parameters to be used in your initial-
ization code.

5.1 Sinusoidal Commutation Developers Toolkit
The developer's toolkit includes 3 software tools:
srate.exe Sample rate modification program.

counts.exe Open loop commutation progra@ounts.execounts the number of encoder counts per
electrical cycle, and also provides motor phasing information (ABC or ACB).

cycles.exe Open loop commutation progra@ycles.execounts the number of electrical cycles per
motor revolution, and also provides motor phasing information (ABC or ACB).

srate.exe - Sample Rate Modification for Commutation

Usesrate.exdo change the sample rate of the card. At the DOS prompt, execute:
srate

Follow the prompts to change the sample rate of the card. If the card cannot attain the specéiaterates
will set the sample rate to the highest possible value.

Operation of rotary motors at very high speed (>100 electrical cycles per second) and low sampling rates may
provide too few points to properly define the drive's 3 sinusoidal electrical cycles. The result can be excess
current use and degraded motor life (due to higher heat dissipation). MEI recommends at least 8 sample points
per electrical cycle to maintain low motor current levels.

The DSP controller’s firmware incorporates a velocity-badease advancehich reduces sample-rate
latency effects. If your application requires commutation rates greater than 150 electrical cycles per second,
please contact MEI for technical support.

counts.exe - Open Loop Commutation Program

Usecounts.ex@o commutate a motor in open-loop mode, which is typically useful when initializing the motor
as part of a startup sequenCeunts.exeequires 3 parameters:

e AXIS an integer specifying the axis to commutate (Phase A)
and an integer specifying the Phase B axis.

e VOLTAGE adouble precision value specifying the voltage (proportional to current) to apply during the
open loop portion of the commutation.

Counts.exavill commutate the motor for one electrical cycle and reporafipgoximatenumber of encoder
counts per electrical cycle. Please note that this number is only an approxi@atiats.exavill also return
motor phasing information.

For safetycounts.exavill leave the amplifier in a disabled state and will also zero the PID coefficients.
After executingcounts.exand before running the commutation initialization programo, must restorethe
PID coefficients

DSP Sinusoidal Commutation Release Note 5

cycles.exe - Open Loop Commutation Program

Usecycles.ex¢éo commutate a motor in open loop mo@gcles.exeequires 4 parameters:

e AXIS -an integer specifying the axis to commutate (Phase A)
-an integer specifying the Phase B axis.

* VOLTAGE -a double value specifying the voltage (proportional to current) to apply during the open
loop portion of the commutation.

¢ COUNTS -an integer specifying the number of encoder counts per revolution in quadrature for the
motor.
Cycles.exavill commutate the motor in open loop mode for the distance specified (as the number of encoder
counts). When the commutation is completaales.exevill display both the phasing of the motor relative to
the encoder and the number of electrical cycles per revolution. You will need these values to initialize the
closed loop commutation.

For safetycycles.exavill leave the amplifier in a disabled state and will zero the PID coefficients.
After executingcycles.exand before running the commutation initialization prognamo, must restorethe
PID coefficients

5.2 Sinusoidal Commutation Development Software

The source code filsincomm.@nd header filsincomm.tcontain all of the code that you need to initialize a
motor for commutation.

Section 5.2.describes 2 phase-finding techniques and their input parameters.

Section 5.2.2escribes the commutation parameters.

Section 5.2.3lescribes sample programs (2 programs are list8ddtion 6.0

Section 5.2.4lescribes the bidirectional limit switch safety feature, and how to implement it.

5.2.1 Closed-Loop Commutation Initialization Programs
MEI currently supports 2 commutation initialization methods in the 2.5.05 Release:
Stepper Mode Method Set the magnetic vector, wait for motor to settle, then initialize.
Dither Mode Method: Dither the stator magnetic vector until rotor position is known, then initialize.

Important!

We recommend that you initiallyselow DAC voltage leveldo protect the motor windings. Be-
fore you set th@hase-findingopen loop current parameters, you should verify the safe continu-
ous current levels for your motor/drive combination.

Itis also good practice to install fuses for each of the 3 motor windings during this initial devel-
opment period, to prevent damage to your motor.

Note

Thedsp_reset(...command will reconfigure the card from boot memory, and the commutation
Note index (determined from the phase-finding sequence) will be lost.

Amplifiers should be turned off during a reset!
After the reset, the commutation phase initialization procedure must be implemented.

DSP Sinusoidal Commutation Release Note 6

Stepper Mode Method (comm_init_set_vector):

Generally, theStepper Modénitialization method is the preferred method for initialization. Stepper Mode
initialization method sets the stator magnetic vector and draws the armature vector into a known location
within one electrical cycle. The rotor is initially pulled into a magnetic position 120 electrical degrees in
advance of the "A" phase position. Next, the rotor is drawn back to the "A" phase position. This 2 position
"stepper"” technique is used to avoid initializing the rotor at a null position 180 electrical degrees from the
assumed rotor position. Initialization occurs following a waiting period for the motor to settle. The following
2 diagrams illustrate the method.

Note Initialization of large inertial loads with minimal friction (i.e., low damping coefficients) may re-
quire several minutes to settle (see paranuetay.settle in next figure).

DAC Phasing ABC

Voltage
A Restore PID
(Volts)
o Open Loop | Closed Loop
Check Delay(time) Duration of Check(time)
DAC_Start
N D D —

I B

B,’ Y
4 \
ST / ! \

Time

\Exit

program

L—J‘—’L—ﬁ -~ Phase B

e B Delay.Settle(time) Delay.Settle(time) — Phase A
\/
This figure shows the A & Bhase voltage historguringstep phase-findinépr an ABC phasing
configuration.

DSP Sinusoidal Commutation Release Note 7

DAC Phasing ACB

Voltage
A

R PID
(Volts) estore

Open Loop | Closed Loop

Vl‘

\ 4

A

Check Delay(time) Duration_of Check(time)

DAC_Start

Time
\Exit
program
1L r—' - - Phase B
. . — Phase A
Delay.Settle(time) Delay.Settle(time)
This figure shows the A & Bhase voltage historguringstep phase-findingpr an ACB phasing
configuration.

Dither Mode Method (comm_init_dither):

Use theDither Modeinitialization method in situations where drawing the motor to a stator pole will cause
excessive initial movement of the load. An example of this might be initializing near a limit switch. However,
the Dither Modemethod requires that you be more aware of the response of the system.

The Dither Modeinitialization method locates the armature position by setting a known stator vector orienta-
tion, and then waits to see the direction of the initial armature acceleration. Based on the initial acceleration,
the angular extent of the region containing the armature vector can be continually reduced by repeating this
process. The goal of having small position change during the dithering cycle may require initial testing for
optimum open loop voltage and time period for acceleration averaging (see additional descriptions in the
upcoming commutation parameters table). Because force/torque induced acceleration is the critical measure-
ment for successful dithering, systems subjected to external forces (i.e., gravitation force on vertical axes,
large cable carrier forces, etc.) will not be suitable to usBither Modeinitialization method.

DSP Sinusoidal Commutation Release Note 8

5.2.2 Commutation Parameters

The required input parameters for the commutation data structure are listed below.

Input Parameters

Axis
Phase_B_Axis

Counts_Per_Comm_Cycle

Electrical_Cycles

Phasing

DAC_Start

DAC_Step

DAC_Limit

Max_Check_Voltage

Check_Delay

Duration_of_Check

Delay.Settle

Delay.Dither.Vel

Delay.Dither.Acc

An integer specifying the axis to commutate.

This corresponds to the "A" phase axis. (e.g., 0 - 7)

A second controller axis used for the “B” phase signal. (e.g., 1- 7)

Note that the phase “B” axis numbmaust be greater thanthe phase “A” axis number.

The number of encoder counts (in quadrature) per revolution of motor.
For a linear motor, this would be theamber of counts per one electrical cycle

For rotary motorsgounts_per_comm_cycle does not necessarily correspond to the number
of counts per electrical cycle. (e.g., 4096)

The integer number of electrical cycles (pole pairs) per motor revolution.

The software will automatically account for systems requiring up to 5 electrical cycles, where
the modulus ofdounts_per_comm_cycle /[electrical_cycles]is zero.

Linear motors use the integer value, one. (e.g., 1 - 5)

The motor/amplifier phasing may B&C (where the A phase immediately leads the B phase)
or ACB (A phasing immediately leading the C phase).

Use macrosPHASING_ABCor PHASING_ACB

Is the open loopAC output used durin§teppeModephase-finding and also the initial volt-
age used durinBither Modephase-finding.

Verify safe continuous motor current levels BEFORE settingpth@ Start level. (0 - 32767,
Max. 32,767 corresponds to 10V. Typical value= 3000)

Is theDAC voltage increment used duribgther Modephase-finding, to step from the value
DAC_Start until rotor movement is detected. (DAC output level will be limited below
DAC_Limit).

Note thatDAC_Step is not used foBteppeModephase-finding. (0 -32767, typical= 500)
The maximunDAC output limit to be used durir@ither Modephase-finding. (0 - 32767,
typical value= 6000)

Max_Check_Voltage is a motor safety feature that checks for unsuccessful phasing finding.

Following the phase-finding procedure and while servoing on position, the A and B phase
DACSs should be providing relatively small voltage outputs to the amplifier. If the absolute val-
ues of these voltage outputs to the amplifier exaesd Check Voltage , then the software

will disable the amplifier. (0 - 32767, Max. 32,767 corresponds to 10V. Typical value: 3000)

Following the phase-finding procedu@eck Delay is the delay period (in seconds) used
for settling prior to checking theAC outputs (using th&tax_Check_Voltage).

Due to the rollover of annsigned16

Check_Delay must not exceed [65538p_sample_rate).

(Suggested values: 1 - 5 seconds)

Following the phase-finding procedure and settling ticYee€k_Delay),

Duration_of Check is the time period (in seconds) during whichmtg®will verify that the
A and B phas®ACs do not exceetlax_Check_Voltage

Due to the roll-over of annsigned16

Duration_of Check ~ must not exceed [65535&p_sample_rate]).

(Suggested values: 1 - 5 seconds)

The time period (in seconds) used to wait for motion to settle dStegpeModeinitializa-
tion moves. Note that this value is used 4 times durinGteppeModeinitialization
sequence. (Suggested values: 5 - 60 seconds)

The time period (in sample periods) over which velocity is averaged from position updates
during Dither Modeinitialization. (Suggested values: 5 - 10 samples)

The time period (in sample periods) over which acceleration is averaged from
Delay.Dither. Vel updates in velocity. Lik®elay.Dither.Vel , Delay.Dither.Acc is
only used foDither Modeinitialization. (Suggested values: 5 - 10 samples)

DSP Sinusoidal Commutation Release Note 9

5.2.3 Sample Closed-Loop Commutation Initialization Programs

To phase-find the rotor position, use one of the following 4 example programs (using your system's specifica-

tions):

 step_abc.c Sets the magnetic stator vector and draws the rotor (field vector) into a known posi-
tion. Resets position and closes servo loop. The sequenceBGehasing.

e step_ach.c Does the same asep_abc.¢ only withACB phasing.

 dith_abc.c Open loop dithers stator vector while monitoring rotor position (acceleration). By suc-
cessive approximation, it determines the phase position of the rotor. It also resets posi-
tion and closes the servo loop. Us&C phasing.

« dith_acb.c Does the same aith_abc.c, only withACB phasing.

5.2.4 Bidirectional Limit Switch Protection Feature

The latest version of MEI commutation firmware offers bidirectional limit switch protection, both during
open-loop phase-finding and during normal closed loop operation. Previous commutation firmware and stan-
dard DSP firmware (non-commutation) required that an activated limit switch must atsthbalirection of
commanded velocityo generate a hardware limit event. (This simplifies limit recovery.)

In order to offer backwards-compatibility, the directional limit switch option is retained as the default configu-
ration for the new firmware. A single function call to DSP external memory can configure any axis combina-
tion to have full limit switch protection, independent of the direction of command velocity. This ensures
greater hardware safety, particularly during initial testing with external sinusoidal commutation. However, the
full limit switch protection feature eliminated the I/O monitoring capability, and requires extra steps for limit
switch recovery.

How to Configure Bidirectional Limit Switch Protection:

Write a configuration word to the address 0x36E8. The default state is 0. Bit 0 enables Axis 0, bit 1 enables
Axis 1, and so on.

/* Configure Axes O - 7 for special limit switch protection */
int16 bit_num;

bit_num = Ox00FF;

dsp_write_dm(Ox36ES8, bit_num)

How to Recover from a Limit Switch Event:

Option 1 Manually move the stage/motor from the active limit.

Option 2 Restore the default limit configuratiodsp_write_dm(0x36E8, 0x0000)], and imple-
ment an open-loop move away from the active limit.

DSP Sinusoidal Commutation Release Note 10

6.0 Code Listings

6.1 step_abc.c

/* Step_ABC.C

:Sinusoidal commutation configuration and initialization.

Program uses Stepper Type motor initialization with ABC Phasing
Written for Version 2.5

Warning! This is a sample program to assist in the integration of the

DSP-Series controller with your application. It may not contain all
of the logic and safety features that your application requires.

*/

include <stdio.h>
include <stdlib.h>
include "sincomm.h"
#define Imtaddr OX36E8
void error (intl6 error_code)

char bufferfMAX_ERROR_LEN];

switch (error_code)

case DSP_OK:
/* No error, so we can ignore it. */

break ;

default:
error_msg(error_code, buffer) ;

fprintf(stderr, "ERROR: %s (%d).\n", buffer, error_code) ;

exit(1);
break;

}
}

int main ()
Commutation_Init Clnit;

intl6 error_code;

intlé bit_num; /* bit word to configure optional HW limit protection */
error_code = do_dsp(); [* initialize communication with the controller */
error(error_code); [* any problems initializing? */

/¥ standard limit configuration
/I bit_num = 0x0000;

I* configure Axes 0-7 for special limit switch protection
directions without cmd velocity requirement */
bit_num = Ox00FF;
dsp_write_dm(Imtaddr, bit_num);

/*

* Set up user-defined SinComm settings */
Clnit.Axis =0;
Clnit.Phase_B_Axis =1,
Clnit.Counts_Per_Comm_Cycle =4096;
Cinit.Electrical_Cycles =2
Clnit.Phasing = PHASING_ABC; /* Pha
Clnit.Dac_Start = 3277,
Cinit.Dac_Step =500;
Clnit.Dac_Limit =16000;
Cinit.Max_Check_Voltage = 6553;

ClInit.Check_Delay =2;
Clnit.Duration_of_Check =
Cinit.Delay.Settle =

DSP Sinusoidal Commutation Release Note

: HW protected only in direction of cmd vel*/

in both

/* Control & A phase axis */
/* B phase axis */
/* Counts per rev */

/* Elec. cycles per rev */
sing */

[* Stepper output value, 1.V */
/* For dithering only, 0.015V */
[* For dithering only, 5.V */
[* Safety check, 2 volts */
/* Delay prior to check, sec */
/* DAC checking time, sec*/
/* Delay used 4 times, sec*/

11

* Configure axis for sinusoidal commutation. Sinusoidal commutation requires
* two axes. The first axis is Phase A, the second axis is

* Phase B. Phase C is generated by the servo drive. After sinusoidal

* commutation is initialized, all motion will be commanded to the

* Phase A axis.

error(comm_configure(&Clnit));
error(comm_init_set_vector(&Clnit));
error(set_position(Clnit.Axis, 0.0));/* zero out position */

return O;

}

6.2 dith_abc.c

/* Dith_ABC.C

:Sinusoidal commutation configuration and initialization.

Program uses Dithering Type motor initialization with ABC Phasing
Warning! This is a sample program to assist in the integration of the
DSP-Series controller with your application. It may not contain all
of the logic and safety features that your application requires.
Written for Version 2.5

*

include <stdio.h>
include <stdlib.h>
include "sincomm.h"
#define Imtaddr 0X36E8
void error (intl6 error_code)
char bufferfMAX_ERROR_LEN];
switch (error_code)
case DSP_OK:
/* No error, so we can ignore it. */
break ;
default:

error_msg(error_code, buffer) ;
fprintf(stderr, "ERROR: %s (%d).\n", buffer, error_code) ;

exit(1);
break;
}
}
int main ()
Commutation_Init Clnit;
intl6 error_code;
intl6 bit_num; /* bit word to configure optional HW limit protection */
error_code = do_dsp(); /* initialize communication with the controller */
error(error_code); /* any problems initializing? */
/¥ standard limit configuration : HW protected only in direction of cmd vel*/

/I bit_num = 0x0000;

DSP Sinusoidal Commutation Release Note

/*

}

configure Axes 0-7 for special limit switch protection in both
directions without cmd velocity requirement */
bit_num = Ox00FF;
dsp_write_dm(Imtaddr, bit_num);
/*
* Set up user-defined SinComm settings
*
/
Clnit.Axis =0; /* Control & A phase axis */
Clnit.Phase_B_Axis =1, /* B phase axis */
Clinit.Counts_Per_Comm_Cycle = 4096; /* Counts per rev */
Clnit.Electrical_Cycles =2; [* Elec. cycles per rev */
Clnit.Phasing = PHASING_ABC; /* Phasing */
Clnit.Dac_Start =3277; [* Stepper output value, 1.V */
Cinit.Dac_Step =500; /* For dithering only, .015V */
Clnit.Dac_Limit =16000; [* For dithering only, 5.V */
Clnit.Max_Check_Voltage = 6553; [* Safety check, 2 volts */
Clnit.Check_Delay =2; /* Delay prior to check, sec */
Clnit.Duration_of_Check =1; /* DAC checking time, sec*/
Cilnit.Delay.Settle =3; /* Delay used 4 times, sec*/
/*
* Configure axis for sinusoidal commutation. Sinusoidal commutation requires
* two axes. The first axis is Phase A, the second axis is
* Phase B. Phase C is generated by the servo drive. After sinusoidal
* commutation is initialized, all motion will be commanded to the
* Phase A axis.
*/
error(comm_configure(&Clnit));
error(comm_init_dither(&Clnit));
error(set_position(Clnit.Axis, 0.0)); [* zero out position */
return O;

DSP Sinusoidal Commutation Release Note

13

	Release Note
	DSP Series Sinusoidal Commutation v2.0b4
	Changes from Previous Release v2.0b3
	1.0 Introduction
	2.0 Overview of Sinusoidal Commutation
	3.0 Hardware Requirements
	4.0 Installation
	4.1 Wiring for Sinusoidal Commutation
	4.2 Loading the Software
	4.3 Loading the Sinusoidal Commutation Firmware

	5.0 Operation
	5.1 Sinusoidal Commutation Developers Toolkit
	5.2 Sinusoidal Commutation Development Software
	5.2.1 Closed-Loop Commutation Initialization Programs
	5.2.2 Commutation Parameters
	5.2.3 Sample Closed-Loop Commutation Initialization Programs
	5.2.4 Bidirectional Limit Switch Protection Feature

	6.0 Code Listings
	6.1 step_abc.c
	6.2 dith_abc.c

